Solving Equilibrium Problems

We are able to group equilibrium problems into two types:

1) We have been given equilibrium concentrations (or partial pressures) and must solve for \(K \) (equilibrium constant).
2) We have been given \(K \) and the initial concentrations and must solve for the equilibrium concentrations.

For the first type of equilibrium problem, we can solve for \(K \) by directly substituting given equilibrium quantities into the reaction quotient:

For example, let’s use the following reaction:

\[
N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)
\]

At equilibrium, the above reaction contains 2.25 M of \(N_2 \), 5.00 M of \(H_2 \), and 3.5 M of \(NH_3 \). Calculate the equilibrium constant.

Because we have been given the equilibrium concentrations of each reactant AND product, we can simply substitute these quantities into the reaction quotient:

\[
Q_c = \frac{[NH_3]^2}{[N_2][H_2]^3}
\]

therefore,

\[
K_c = \frac{(3.50)^2}{(2.25)(5.00)^3} = 0.218
\]

We can also solve for \(K \) if we have only been given some quantities, but not all. For instance, if you were given the initial concentrations and equilibrium concentrations you can set up a reaction table or ‘ICE’ table to help you calculate the equilibrium constant, \(K \).

For example, let’s use the following reaction and quantities to solve for \(K \).

The decomposition of nitrogen oxide is shown by the reaction below:

\[
2NO \rightleftharpoons N_2 + O_2
\]

This reaction was studied at 298 K with initial amount of 0.215 M of NO gas. At equilibrium, the concentration of NO was 0.083M. Calculate \(K \) for this reaction.

It is important to recognize that we have initial and equilibrium amounts for NO, but we don’t know the equilibrium amounts of our products, \(N_2 \) and \(O_2 \). When we don’t know some of our equilibrium amounts, we must set up a reaction or ICE table.

<table>
<thead>
<tr>
<th>Concentration (M)</th>
<th>2NO(g)</th>
<th></th>
<th>N_2(g)</th>
<th>+</th>
<th>O_2(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.215M</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>-2x</td>
<td>+x</td>
<td></td>
<td></td>
<td>+x</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>0.215-2x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

In order to solve for \(K_c \), we need equilibrium concentrations for all reactants and products. Based on the balanced equation, we know that when 2x moles of NO reacts, x moles of \(N_2 \) and \(O_2 \) will form. We also were given the equilibrium concentration for NO (0.083M), so we can solve for \(x \):

\[
0.215 - 2x = 0.083M
\]

Solve for \(x \):

\[
x = (0.083M - 0.215M) / -2
\]
Now that we have determined \(x \), we can substitute the concentration into \(Q_c \):

\[
Q_c = \frac{[N_2][O_2]}{[NO]^2} \quad \text{therefore,} \quad K_c = \frac{(0.066)(0.066)}{(0.083)^2} = 0.632
\]

The second type of equilibrium problem you may encounter will give you both initial concentrations and \(K \) and then ask you to solve for the equilibrium concentrations.

Let's examine the reaction involving the decomposition of HI:

\[
2\text{HI}(g) \rightleftharpoons \text{I}_2(g) + \text{H}_2(g) \quad K_c = 0.67
\]

If 3.0 M of HI is placed in a flask, what is the equilibrium concentration of each product and reactant?

Because we were given initial amounts, we must complete an ICE table:

<table>
<thead>
<tr>
<th>Concentration (M)</th>
<th>2HI(g)</th>
<th>(\text{I}_2) (g)</th>
<th>+</th>
<th>(\text{H}_2) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>3.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>-2x</td>
<td>x</td>
<td>+x</td>
<td></td>
</tr>
<tr>
<td>Equilibrium</td>
<td>3.0-2x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

We were given the equilibrium constant for this reaction (\(K_c = 0.67 \)), so we can set up our reaction quotient:

\[
Q_c = \frac{[\text{I}_2][\text{H}_2]}{[\text{HI}]^2} \quad \text{therefore} \quad K_c = 0.67 = \frac{(x)^2}{(3.0-2x)^2}
\]

We can take the square root of each side of the equation:

\[
\sqrt{0.67} = \frac{x}{3.0 - 2x}
\]

Next, we can multiply each side by (3.0-2x):

\[
2.46 - 1.64x = x
\]

So, \(2.46 = 2.64x \) therefore \(x = 0.93 \)

Now that we have solved for \(x \), we can calculate the equilibrium concentrations.

\[
[\text{I}_2] = [\text{H}_2] = x = 0.93 \text{ M}
\]

\[
[\text{HI}] = 3.0 - 2(0.93) = 1.14 \text{ M}
\]