

Completing the Square

The method of completing the square is sometimes used to convert a quadratic function in this form $f(x)=ax^2+bx+c$ into vertex form $f(x)=a(x-h)^2+k$ where the vertex is (h,k).

Start with a quadratic function in ax^2+bx+c form.

Separate the first two terms with parentheses.

Factor out the constant *a* from each term in the parentheses. Leave room after the $\frac{b}{a}x$ term.

Take the coefficient in front of the *x* term and divide it by 2 then square it. $\frac{b}{a} \rightarrow \left(\frac{b}{2a}\right)^2$. Add that value inside the parentheses.

The value $\left(\frac{b}{2a}\right)^2$ was added inside the parentheses and everything inside the parentheses is being multiplied by *a* so you have actually added $a \left(\frac{b}{2a}\right)^2$ to the entire function. For everything to remain equal we must subtract $a \left(\frac{b}{2a}\right)^2$ from the entire function. Subtract $a \left(\frac{b}{2a}\right)^2$ outside the parentheses.

 $x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2}$ is now a perfect square so it can be condensed into $\left(x + \frac{b}{2a}\right)^{2}$.

f(x) is now in vertex form with the vertex (h,k) being $\left(-\frac{b}{2a}, c-a\left(\frac{b}{2a}\right)^2\right)$. You have now completed the square.

 $f(x) = ax^2 + bx + c$

$$f(x) = (ax^2 + bx) + c$$

$$f(x) = a\left(x^2 + \frac{b}{a}x\right) + c$$

$$f(x) = a\left(x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2}\right) + c$$

$$f(x) = a\left(x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2\right) + c - a\left(\frac{b}{2a}\right)^2$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - a\left(\frac{b}{2a}\right)^2$$

Examples

Start with $f(x) = x^2 + 2x - 17$.	$f(x) = x^2 + 2x - 17$
Separate the first two terms with parentheses.	$f(x) = (x^2 + 2x) - 17$
There is no need to factor out the coefficient in front of the x^2 term because it is already 1. Divide the coefficient in front of the x term by 2 then square it.	$f(x) = (x^2 + 2x + 1) - 17$
$2 \rightarrow \left(\frac{2}{2}\right) = 1$. Add 1 inside the parentheses.	
Since you added 1 to the function, you must subtract 1 from the function to keep everything equal. Subtract 1 outside the parentheses.	$f(x) = (x^2 + 2x + 1) - 17 - 1$
$x^2 + 2x + 1$ is a perfect square so it can be condensed into $(x + 1)^2$.	$f(x) = (x+1)^2 - 18$
f(x) is now in vertex form. The vertex is (-1, -18).	
Start with $f(x) = 5x^2 - 3x + 20$	$f(x) = 5x^2 - 2x + 20$
	f(x) = 3x - 3x + 20
Separate the first two terms with parentheses.	$f(x) = (5x^2 - 3x) + 20$
Factor 5 out of the parentheses.	$f(x) = 5\left(x^2 - \frac{3}{5}x\right) + 20$
Divide $-\frac{3}{5}$ by 2 then square it. $-\frac{3}{5} \rightarrow \left(-\frac{3}{10}\right)^2 = \frac{9}{100}$. Add $\frac{9}{100}$ inside the parentheses.	$f(x) = 5\left(x^2 - \frac{3}{5}x + \frac{9}{100}\right) + 20$
The $\frac{9}{100}$ is being multiplied by 5 so you must subtract	$f(x) = 5\left(x^2 - \frac{3}{5}x + \frac{9}{100}\right) + 20 - \frac{9}{20}$
$5\left(rac{9}{100} ight)$ from the function to keep everything equal.	
$5\left(\frac{9}{100}\right) = \frac{9}{20}$. Subtract $\frac{9}{20}$ outside the parentheses.	
$x^2 - \frac{3}{5}x + \frac{9}{100}$ is a perfect square which can be condensed into $\left(x - \frac{3}{10}\right)^2$.	$f(x) = 5\left(x - \frac{3}{10}\right)^2 + \frac{391}{20}$
$f(x)$ is now in vertex form. The vertex is $\left(\frac{3}{10}, \frac{391}{20}\right)$.	