Completing the Square

The method of completing the square is sometimes used to convert a quadratic function in this form $f(x)=a x^{2}+\boldsymbol{b} x+\boldsymbol{c}$ into vertex form $f(x)=a(x-h)^{2}+\boldsymbol{k}$ where the vertex is (h,k).

Start with a quadratic function in $a x^{2}+b x+c$ form.

Separate the first two terms with parentheses.

Factor out the constant a from each term in the parentheses. Leave room after the $\frac{b}{a} x$ term.

Take the coefficient in front of the x term and divide it by 2 then square it. $\frac{b}{a} \rightarrow\left(\frac{b}{2 a}\right)^{2}$. Add that value inside the parentheses.

The value $\left(\frac{b}{2 a}\right)^{2}$ was added inside the parentheses and everything inside the parentheses is being multiplied by a so you have actually added $a\left(\frac{b}{2 a}\right)^{2}$ to the entire function. For everything to remain equal we must subtract $a\left(\frac{b}{2 a}\right)^{2}$ from the entire function. Subtract $a\left(\frac{b}{2 a}\right)^{2}$ outside the parentheses.
$x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}$ is now a perfect square so it can be condensed into $\left(x+\frac{b}{2 a}\right)^{2}$.
$f(x)$ is now in vertex form with the vertex (h, k) being $\left(-\frac{b}{2 a}, c-a\left(\frac{b}{2 a}\right)^{2}\right)$. You have now completed the square.

Examples

Start with $f(x)=x^{2}+2 x-17$.

$$
f(x)=x^{2}+2 x-17
$$

Separate the first two terms with parentheses.

$$
f(x)=\left(x^{2}+2 x \quad\right)-17
$$

There is no need to factor out the coefficient in front

$$
f(x)=\left(x^{2}+2 x+1\right)-17
$$ of the x^{2} term because it is already 1 . Divide the coefficient in front of the x term by 2 then square it. $2 \rightarrow\left(\frac{2}{2}\right)^{2}=1$. Add 1 inside the parentheses.

Since you added 1 to the function, you must subtract 1 from the function to keep everything equal. Subtract 1 outside the parentheses.
$x^{2}+2 x+1$ is a perfect square so it can be

$$
f(x)=\left(x^{2}+2 x+1\right)-17-1
$$ condensed into $(x+1)^{2}$.

$f(x)$ is now in vertex form. The vertex is $(-1,-18)$.

Start with $f(x)=5 x^{2}-3 x+20$.

Separate the first two terms with parentheses.

Factor 5 out of the parentheses.

Divide $-\frac{3}{5}$ by 2 then square it. $-\frac{3}{5} \rightarrow\left(-\frac{3}{10}\right)^{2}=\frac{9}{100}$. Add $\frac{9}{100}$ inside the parentheses.

The $\frac{9}{100}$ is being multiplied by 5 so you must subtract $5\left(\frac{9}{100}\right)$ from the function to keep everything equal. $5\left(\frac{9}{100}\right)=\frac{9}{20}$. Subtract $\frac{9}{20}$ outside the parentheses.
$x^{2}-\frac{3}{5} x+\frac{9}{100}$ is a perfect square which can be condensed into $\left(x-\frac{3}{10}\right)^{2}$.
$f(x)$ is now in vertex form. The vertex is $\left(\frac{3}{10}, \frac{391}{20}\right)$.

