Teaching and Learning Center
university of washington tacoma

Stoichiometry Worksheet

1. In the combustion reaction of pentane with gaseous oxygen, CO_{2} and water vapor are produced.

Ex: $\mid \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3(\mathrm{I})}+8 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
If you are given 31.125 g of pentane to burn, how many grams of CO_{2} gas will be produced (assuming $\mathrm{O}_{2}(\mathrm{~g})$ is in excess)?
-the first step in a stoichiometry problem is to determine the number of moles of our reactants. We know that O_{2} is in excess, so we only need to convert pentane to moles. First we must find the molecular weight (MW) of pentane:

MW of pentane: 72.15 grams/mole

Now that we know the MW we can find the moles of pentane.

Grams of pentane
MW of pentane $=$

Next, we will use the molar ratios to determine the moles of CO_{2} produced.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3(\mathrm{l})}+8 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 5 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Comparing the moles of pentane to that of CO_{2}, it can be seen that the molar ratio is 1:5 pentane:carbon dioxide.
-Multiply moles of pentane by the molar ratio to calculate the moles of CO_{2}.

-Lastly, the moles of CO_{2} must be converted to grams, this can be done through the use of the MW of $\mathrm{CO}_{2}=44.01 \mathrm{~g} / \mathrm{mole}$.
2.157 moles of $\mathrm{CO}_{2} * \mathrm{MW}$ of $\mathrm{CO}_{2} 44.01 \mathrm{~g} /$ mole $=\quad 94.93$ grams of CO_{2} produced
2. a) If you react 19.8 g of lead(II) nitrate with 12.4 g of sodium iodide, how much lead(II) iodide is formed?
-Because we were given two amounts of our reactants, we know this is a limiting reactant problem and must first determine which reactant is limiting. First we need to write out the balanced chemical reaction:
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaI} \longrightarrow \mathrm{PbI}_{2}+2 \mathrm{NaNO}_{3}$

We now see the molar ratios between our reactants and products, but we still need to convert our products into moles before determining the limiting reactant.

First find the MW of each reactant. Divide the number of grams by the MW to determine the number of moles for each reactant.
19.8 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

$$
0.0598 \text { moles of } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}
$$

$331.2 \mathrm{~g} / \mathrm{mole}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Teaching and Learning Center
university of washington tacoma
12.4 g of NaI
$149.89 \mathrm{~g} /$ mole of NaI

We can't determine the limiting reactant from these amounts. We must use molar ratios to determine how many moles of lead(II) iodide will be formed in this reaction. First, let's calculate how many moles of Pbl_{2} is formed if we assume $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is the limiting reactant:

Now, let's assume Nal is the limiting reactant:

Which reactant produces the least amount of product? Lead (II) Nitrate produces 0.0598 moles of PbI_{2}, while Nal only produces 0.0414 moles of PbI_{2}, therefore Nal is our limiting reactant. Now we can convert moles of PbI_{2} into grams by multiplying by the MW of Pbl_{2} :
0.0414 moles of $\mathrm{PbI}_{2} * 461.01 \mathrm{~g} / \mathrm{mole}$ of $\mathrm{PbI}_{2}=19.1 \mathrm{~g}$ of PbI_{2} will be produced
b) How much of the excess reactant is leftover after the reaction has completed?

If Na is our limiting reactant, we know that $\mathrm{Pb}\left(\mathrm{NO}_{2}\right)_{3}$ is our excess reactant. We also know how many moles of each reactant we have and the molar ratio between the two reactants. For every two moles of Nal, we need one mole of $\mathrm{Pb}\left(\mathrm{NO}_{2}\right)_{3}$:

We were given 0.0598 moles of $\mathrm{Pb}\left(\mathrm{NO}_{2}\right)_{3}$, so we can subtract 0.0414 from the original amount to find out how much $\mathrm{Pb}\left(\mathrm{NO}_{2}\right)_{3}$ remains.
0.0598 moles -0.0414 moles used up $=0.0184$ moles remain. We can convert this to grams by multiplying the remaining moles by the MW of $\mathrm{Pb}\left(\mathrm{NO}_{2}\right)_{3}$:
0.0184 moles * $331.2 \mathrm{~g} / \mathrm{mol}=6.09 \mathrm{~g}$ of $\mathrm{Pb}\left(\mathrm{NO}_{2}\right)_{3}$ remain
c) You conduct the above reaction using the amount given. The reaction yields 12.4 g of Pbl_{2}. What was your percent yield?

To determine percent yield you divide your actual yield by your theoretical yield. Remember, that we calculate the theoretical yield of PbI_{2} in part a (19.1 g of PbI_{2}). You will then divide that number by the thoretical yield and multiply by 100:

