
Extremely Randomized Trees with
Multiparty Computation

by

David Melanson

Supervised by Dr. Martine De Cock

A senior thesis submitted in partial fulfillment of the departmental honors requirements
for the degree of

Bachelor of Science
Computer Science & Systems

University of Washington Tacoma

June 2020

Presentation of work given on June 5, 2020

The student has satisfactorily completed the Senior Thesis, presentation and senior elective course
requirements for CSS Departmental Honors.

Faculty advisor: ___________________________________ Date_______________________

CSS Program Chair: ________________________________ Date_______________________

June 12, 2020

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

Martine De Cock

c©Copyright 2020

David Melanson

Extremely Randomized Trees with

Multiparty Computation

David Melanson

An honors thesis
submitted in partial fulfillment of the

requirements for

Computer Science and Systems Honors

University of Washington Tacoma

2020

Reading Committee:

Dr. Martine De Cock, Chair

Program Authorized to Offer Degree:
B.S. in Computer Science and Systems

University of Washington Tacoma

Abstract

Extremely Randomized Trees with
Multiparty Computation

David Melanson

Chair of the Supervisory Committee:
Dr. Martine De Cock

School of Engineering and Technology

Machine learning (ML) is a prominent field in the study of computer science. The usefulness

of ML algorithms comes from its ability to process large amounts of data and recognize

patterns in the data, which allows to classify new, previously unseen instances of data. A

limiting factor in ML is sometimes data accessibility. In the modern age, there often exists

more data than we would know what to do with, but some data must be kept private, and

thus some databanks become inaccessible. In this thesis, we use Privacy-Preserving Machine

Learning (PPML) with Multi-Party Computation (MPC) to allow two parties to jointly

train an ML model on their combined data without having to reveal their data to each

other. The ML algorithm we’ve chosen to implement into a secure MPC framework is the

Extremely Randomized Trees (extra trees) algorithm. The extra trees algorithm outputs an

ensembles of decision trees, which are state-of-the-art for many supervised ML tasks. Extra

trees classifiers can be trained on data with continuous attribute values without the need

to sort the data which would be an expensive operation in the context of MPC. Our MPC

protocol for training extra trees classifiers is fast enough to use in practice, and could, for

example, allow two representatives of hospitals to combine their data regarding symptoms

in patients to train an ML model for medical diagnosis, all in a privacy-preserving manner.

TABLE OF CONTENTS

Page

List of Figures . ii

Chapter 1: Introduction . 1

Chapter 2: Extra Trees in the Clear . 4

2.1 Extra Trees Algorithm . 4

2.2 Variations to Extra Trees . 10

Chapter 3: Cryptographic preliminaries . 11

3.1 Fixed Point Representation in a Ring . 11

3.2 Trusted Initializer . 12

3.3 Secure Multiparty Computation . 12

3.4 Communication Between Parties . 17

Chapter 4: Pre-Processing . 19

4.1 Overview . 19

4.2 Pre-Processing with No Security . 20

4.3 Secure Pre-Processing in the Honest-but-Curious Setting 22

Chapter 5: Training the Ensemble . 29

5.1 Training a Decision Tree . 29

5.2 Modification of πSID3T . 30

Chapter 6: Results . 33

Chapter 7: Conclusions . 38

Bibliography . 40

i

LIST OF FIGURES

Figure Number Page

6.1 Comparing accuracy of discretizing per tree and discretizing per node on the
Breast Cancer data set with a max depth of 3, 50 trees in the ensemble,
and varying features per split . 36

6.2 Comparing accuracy of discretizing per tree and discretizing per node on the
Breast Cancer data set with a max depth of 3, 50 trees in the ensemble,
and varying features per split . 37

ii

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Dr. Martine De Cock who has

guided me through this entire process, allowing me to succeed in my academic endeavours. I

also wish to thank Davis Railsback and Dr. Anderson C.A. Nascimento who have patiently

taught me much of what I know about MPC. Additionally, I extend my thanks to Rafael

Dowsley, who assisted me in writing pseudo-code in a concise, and clear manner. I would

also like to thank Jianwei Shen, and Davis Railsback again, for helping me understand how

to implement the secure extra trees algorithm in Rust. Lastly, I would like to thank Samuel

Adams, who tirelessly implemented the secure extra trees source code with me, splitting

much of the workload in half.

iii

1

Chapter 1

INTRODUCTION

Machine learning (ML) has enabled important and impactful applications in data science

over the past few decades. With the vast increase in data availability, and the increased

capabilities of modern hardware, we’ve been able to process large amounts of data and

make meaningful predictions from that data. ML has a wide variety of applications, from

determining who would be most susceptible to an advertisement, to assisting doctors in

uncovering if a patient has cancer or not. With its wide range of applications, ML has

become a valuable asset.

In principle, the more data you have available, the more reliable you can make your ML

model. The issue that we sometimes come across in ML is that we do not have enough

data at our disposal to train our models. In some cases, the data may exist in massive

amounts, but we may not have access to it because it is private. Let us consider the case

where we have two parties in the medical field representing their hospitals, Alice and Bob.

Alice and Bob both have data regarding features of tumors in patients. These tumors can

be classified as malignant, or benign. The two parties can use their own data to train a ML

model that can help doctors diagnose patients in their respective hospitals. While each party

may have enough data to make meaningful ML models, it could be beneficial if the parties

somehow combined their data in order to make a more sophisticated model. However, this

can endanger the parties of violating patient confidentiality. The data hospitals keep on their

patients tend to be highly private, and illegal to distribute. These sort of dilemmas can make

it difficult to provide ML models with the best possible accuracy. Considering how valuable

some of these ML tasks can be, we want to find a way to circumvent these issues.

Scenarios akin to the issue in the previous paragraph are what we aim to tackle in this

2

thesis. We present a Privacy-Preserving Machine Learning (PPML) algorithm that combines

ML with cryptographic techniques to conceal data. Our PPML algorithm is constructed with

Secure Multi-Party Computation (MPC) protocols [4]. This will allow multiple parties to

aggregate their data to train a common ML model without ever revealing information.

While deep learning is state-of-the-art for tasks that relate to perception, such as com-

puter vision and natural language processing, in domains with structured information, the

best results are often obtained with tree ensemble methods, such as random forests and

boosted decision trees [7]. The latter also have the advantages of being faster to train and

being easier to interpret. The PPML training algorithm we introduce in this thesis is mod-

eled after the extremely randomized trees (extra trees) classifier presented by Geurts et. al

[9]. Extra trees process continuous valued data and produce an ensemble of decision trees

to classify said data. Each decision tree (DT) is trained by picking a random subset of

attributes in the dataset, and then partitioning the dataset based on random splits in those

attributes, and selecting the best split. This algorithm is a suitable choice for PPML because

by choosing splits randomly, we avoid the need to sort the data in order to find the optimal

split, and sorting data is an expensive operation in the context of MPC. Currently, there

appear to exist few proposals for training DTs on continuous attributes [2, 12, 13]. These

proposals are based off of Quinlan’s C4.5 algorithm [11], which does require sorting the data.

To the best of our knowledge, the privacy-preserving extra trees algorithm presented in this

thesis, which we will refer to as πXT for its remainder, is the first and only of its kind. Our

πXT algorithm provides the accuracy of extra trees, and the security guaranteed by MPC

protocols. In this thesis, we focus on scenarios with two parties Alice and Bob (2PC), where

the values of the input attributes are continuous, and whose target values are discrete. This

scenario for instance arises when Alice and Bob both have tissue samples, characterized

through gene expression values, that need to be classified as cancer or not. For other real

world datasets that fit this scenario, we refer to Chapter 6.

The rest of this thesis is structured as follows: In Chapter 2, we will describe the extra

trees algorithm from Geurts et. al [9] which acts as the precursor to our own. In Chapter

3

3, we recall cryptographic preliminaries that are necessary to understand how the secure

ML algorithm functions. This includes the additive sharing scheme we use to keep each

party’s data hidden from the other, and cryptographic primitives we use to construct certain

functionality. Chapter 4 describes a pre-processing phase, which consists of descriptions

about how we format our data, and the operations we perform on the data before we enter

the training algorithm. In Chapter 5 we then discuss how we actually train our model with

the pre-processed data. In Chapter 6, we examine the runtime and accuracy results of our

algorithm on real world data. Finally, in Chapter 7 we provide a summary of the thesis, and

future work.

The results from this work, along with proofs of correctness and security of the protocols

that we developed, have been submitted for publication as part of a paper:

Secure Training of Tree based Models over Continuous Data

Samuel Adams, Chaitali Choudhary, Martine De Cock, Rafael Dowsley, David

Melanson, Anderson Nascimento, Davis Railsback, and Jianwei Shen

Under review, 2020

4

Chapter 2

EXTRA TREES IN THE CLEAR

2.1 Extra Trees Algorithm

A proposal and implementation of the extra trees algorithm was given by Pierre Geurts,

Damien Ernst, and Louis Wehenkel in their paper Extremely randomized trees, published in

2006 [9]. The algorithm gets its name from the random way it constructs each DT, which

reduces the chance of overfitting the data. Although the algorithm could be adapted to

process categorical attributes, the main focus of the paper was to process numerically valued

attributes. Since its introduction, the exra trees algorithm has become popular among data

scientists. It is for instance included in well known ML software libraries such as sklearn1

and frequently adopted in successful solutions in data science competition.

In PPML, we say that an algorithm is “in-the-clear” if we make no attempt to hide the

data, in other words, when all computations are done on plaintext instead of on encrypted

data. The original extra trees algorithm is an example of an in-the-clear algorithm. The

extra trees algorithm works by training an ensemble of binary DTs, where each DT in the

ensemble has its own idea of how to classify new data.

2.1.1 Training an Extra Tree

Apart of what makes extra trees random is the way it processes the data set. Throughout

the training of DTs, the algorithm will randomly pick several columns of data without

replacement, and try to determine which column best describes the data. Each column

corresponds to an attribute which describes a feature of the data set. Let us take the

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

ExtraTreesClassifier.html

5

following data set as an example. Suppose we have 9 training examples (instances) for a

predictive maintenance system. The input attributes A1, ...,A4 are reading from 4 sensors,

and the classification (label) indicates whether the machine needs maintenance: “b” (blue)

means “everything is ok”, “r” (red) means “needs urgent maintenance”, and “y” (yellow)

means “may need maintenance in the near future”.

A1 A2 A3 A4 label

1.5 1.2 1.0 1.0 b

1.7 1.5 2.2 1.4 b

2.1 1.2 3.0 1.6 b

2.6 2.2 1.4 2.0 r

2.7 2.7 2.0 2.4 r

4.8 3.9 3.4 2.6 y

2.2 1.0 1.2 3.0 b

2.4 2.6 2.4 3.4 b

3.8 4.1 3.6 3.6 y

Let us suppose the algorithm randomly chooses 2 columns, A1 and A3, from the data

set. The algorithm will then pick a random threshold between the maximum and minimum

values in each column. Lets say 2.7 for A1, and 2.35 for A3. Based off of the threshold chosen

for A1, we can horizontally partition the data set as follows:

A1 A2 A3 A4 label

2.7 2.7 2.0 2.4 r

4.8 3.9 3.4 2.6 y

3.8 4.1 3.6 3.6 y

6

A1 A2 A3 A4 label

1.5 1.2 1.0 1.0 b

1.7 1.5 2.2 1.4 b

2.1 1.2 3.0 1.6 b

2.6 2.2 1.4 2.0 r

2.2 1.0 1.2 3.0 b

2.4 2.6 2.4 3.4 b

Notice that the first subset only consists of data where the attribute A1 has values ≥ 2.7,

and the second subset has values < 2.7. Doing the same thing for the split in A3 yields:

A1 A2 A3 A4 label

2.1 1.2 3.0 1.6 b

4.8 3.9 3.4 2.6 y

2.4 2.6 2.4 3.4 b

3.8 4.1 3.6 3.6 y

A1 A2 A3 A4 label

1.5 1.2 1.0 1.0 b

1.7 1.5 2.2 1.4 b

2.6 2.2 1.4 2.0 r

3.1 2.7 2.0 2.4 r

2.2 1.0 1.2 3.0 b

Now we have two subsets of the data for each split column, A1 and A3. We now need a

quantifiable way to determine which attributes split best describes the data. The metric

used in the original extra trees algorithm is a variant of Shannon information gain, which

scores how meaningful the split in our data is. In πXT, we use a variant of a different scoring

method, the Gini index. For consistency’s sake, we will use the Gini index to score the

7

data sets in this example. The Gini index is a number between 0 and 1 that describes the

probability that we incorrectly classify the data if we randomly pick a classification relative to

the distribution of the current classifications in the data. Given this definition, we naturally

wish to find the split that minimizes the Gini index. We define the Gini index for a particular

split as G(Aj) = 1 −
∑2

i=1

(
|Si|
|S| (
∑C

j=1(pi,j)
2)
)

where S is the current data set, Si is one of

the two data sets created by the split, C is the number of classifications, and pi,j is the

proportion of the j’th classification in the i’th subset of data.

The first subset created by the split in A1 had 3 training examples, with a proportion of

1/3 red, and 2/3 yellow. The second data set has 6 training examples, with a proportion of

5/6 blue, and 1/6 red. With this information, we can calculate its Gini index as

G(A1) = 1−
(

3

9

(
(
1

3
)2 + (

2

3
)2
)

+
6

9

(
(
5

6
)2 + (

1

6
)2
))
≈ 0.33.

Performing similar calculations for the split from A3 gives

G(A3) = 1−
(

4

9

(
(
2

4
)2 + (

2

4
)2
)

+
5

9

(
(
3

5
)2 + (

2

5
)2
))
≈ 0.49.

Because the split in A1 has a Gini index smaller than A3, the extra trees algorithm will

choose to split on the threshold 2.7 from A1. We will then take the subsets created from the

split with the columns A1 and A3 removed, and create a right child trained on the set

A2 A4 label

2.7 2.4 r

3.9 2.6 y

4.1 3.6 y

8

and a left child trained on the set

A2 A4 label

1.2 1.0 b

1.5 1.4 b

1.2 1.6 b

2.2 2.0 r

1.0 3.0 b

2.6 3.4 b

To classify an unseen instance on the DT we have started to create, we would first test

the value in attribute A1 to see whether it is less than the threshold, or greater than or equal

to the threshold. The traversal of the instance on this DT is dependant on the values of the

instances attributes. The DT we have trained up to this point looks like the following:

A1

... ...

< 2.7 ≥ 2.7

The tree is then recursively built by the same rules until we hit one of the following 3

stopping conditions: (1) all of the class labels in the nodes’ subset of data are the same, (2)

the amount of data (rows) that has reached the node is under a certain threshold, or (3) each

column of data only has one distinct value remaining. When a stopping condition is met,

the frequencies of each class label in the data set are returned, i.e. probability distribution

over the class labels. This allows us to weight the vote of each tree in the ensemble. To train

m trees, we repeat the same process m times. High level pseudo code to train one DT is

given in Algorithm 1.

9

Algorithm 1: Algorithm for Training an Extra-Trees Classifier.

Input : A training set S with continuous data and n samples (each sample has f

attributes (features)), the number k of features to consider in each node,

the number m of trees in the ensemble, the minimum number nε of values

to split on.

Output: An ensemble of trees E = t1, ..., tm

1 Function Build extra tree(S, k,m,nε)

2 if |S| ≤ nε or all classes or attribute values in S are constant then

3 return class frequencies

4 else

5 Randomly select k (non-constant valued) attributes, {a1, ..., ak}, without

replacement, among all candidate attributes in S.

6 Generate k splits, {s1, ..., sk}, where each split si is a value in the range of

the attribute ki in S

7 Select s′ such that Score(s′,S) = maxi∈{1,...,k}Score(si,S), where the scoring

function outputs a number indicating how good the split is

8 From s′, split S into two sets, Sl and Sr

9 Let tl = Build extra tree(Sl) and tr = Build extra tree(Sr)

10 Create a node N with the split s′, attach tl and tr as left and right subtrees

11 end

12 return N

10

2.2 Variations to Extra Trees

The extra trees algorithm is designed to maximize accuracy by making an ensemble of DTs

that are resilient to noisy data. There are a few rules in the algorithm that do not lend

themselves to a MPC setting. For example, removing attributes without replacement. This

operation would require us to maintain information about what attributes are available to

us at any given moment. While this should be no issue in-the-clear, keeping these results

in a secure setting, and then using them, could add significant computational expenses. In

general, every aspect or rule in the extra trees algorithm whose removal does not make a

large impact on the accuracy should be removed. We’ll see in Chapter 6 that any loss in

accuracy due to the removal of a rule should be regainable through tweaking the parameters.

In chapters 4 and 5 we will construct a nearly equivalent algorithm to extra trees that will

be ideal in the MPC setting.

11

Chapter 3

CRYPTOGRAPHIC PRELIMINARIES

3.1 Fixed Point Representation in a Ring

The protocol πXT that we propose in this thesis is designed for training of extra trees classifiers

on data with continuous attribute values (real numbers). The training data consists of a set

S of training examples 〈(x1,x2, . . . ,xf), y〉. The attribute (or feature) values x1,x2, . . . ,xf

are real numbers, while the class label y is categorical. The goal is to learn a function from

the data that maps previously unseen feature values to a corresponding class label, e.g. to

determine whether a patient has a disease or not based on blood pressure, temperature etc.

The kind of functions that we consider in this thesis are ensembles of DTs. Our assumption

is that, instead of residing in one place, the data set S is distributed across multiple data

owners.

During the execution of the protocol πXT and its subprotocols, operations are performed

on additive shares in the ring Zq, where q is some appropriate integer. In this thesis, we

mainly use q = 2λ. Before execution of any protocol, data owners must map any continuous

attribute value x into the ring. To do so, they use the function Q : R → Z2λ , where Q is

defined as (see [3])

Q(x) =

2λ − b2a · |x|c if x < 0

b2a · xc if x ≥ 0

(3.1)

When converting Q(x) into its bit representation, it consists of λ bits in total. The first

a bits represent the fractional part of x, the next b bits represent the non-negative integer

part of x, and the most significant bit represents the sign in a two’s compliment scheme.

For finite λ, Q defines a bijection between the reals that can be represented by λ bits, and

12

the integers in Zq. This allows us to easily combine shares and transition from the ring to

the reals if the parties wish to reveal the actual values at any point. When choosing a λ

value, we must choose one large enough to be able to represent the largest numbers produced

during protocols. Multiplication of fixed point numbers doubles the fractional bits, and so

products must be truncated to remain in the proper range. The product can also double

the non-negative integer bits (which do not become truncated), and as such, λ must be at

least 2(a+ b). It is also important to choose a b large enough to represent the largest value

possible for the integer part of all x’s. The value of λ, a, and b largely depend on the type

of data we are processing. In our work, λ = 64, b = 20, and a = 10 suffices.

3.2 Trusted Initializer

For πXT, we use a trusted initializer (TI) which pre-distributes correlated randomness to the

parties participating in the protocol. This correlated randomness allows us to apply a one

time pad (OTP) to each piece of data. This process of using OTPs on each piece of data

allow us to keep data secure. Among other things, the TI also distributes multiplication

triples, which allows parties to securely multiply their secure values together [1]. After the

TI makes its distributions, it terminates. This ensures that it has no access to any of the

protocols. If the TI is unavailable or undesirable, the two parties can simulate the process

of the TI at the cost of efficiency during the distribution phase.

3.3 Secure Multiparty Computation

3.3.1 Security Setting

When constructing MPC protocols, we need to define the type of adversaries we intend

to protect data-holders from. In this thesis, we exclusively consider “honest-but-curious

adversaries”. This setting is typical for MPC based PPML (see e.g. [5, 6]). This assumes

that the parties involved will not deviate from the protocols, but will try to learn information

regarding the other parties’ data during execution. The protocols we implement prevent

13

parties from learning this information.

3.3.2 Shares

To achieve security of parties’ data in 2PC, we use an additive sharing scheme. Additive

sharing applies a OTP of correlated randomness to each piece of data. After each party maps

their values into Zq, they secret share attribute values on their end and send it to the other

party. Any value z in Zq is split into two shares z0, z1 ∈ Zq uniformly at random subject

to the constraint z = z0 + z1 mod q. From the perspective of the parties, the secret shared

data looks like random noise. It is only when parties add their shares together do they retain

their true value in the ring. We denote each party’s secret sharing of a value z as [[z]]q. All

computations in our work are assumed to be modulo q unless otherwise specified, and so we

omit modular notation with q from the remainder of this thesis, and will refer to [[z]]q as [[z]].

The following operations can be performed locally (no communication required) with

secret shared values between the parties Alice and Bob in 2PC:

• Addition (z = x+y): Alice and Bob just add their local shares of x and y. This operation

will be denoted by [[z]]← [[x]] + [[y]].

• Subtraction (z = x − y): Alice and Bob subtract their local shares of y from that of x.

This operation will be denoted by [[z]]← [[x]]− [[y]].

• Multiplication by a constant (z = c · x): Alice and Bob multiply their local shares of x by

c. This operation will be denoted by [[z]]← c[[x]]

• Addition of a constant (z = x+ c): Alice adds c to her share x, while Bob keeps the same

share of x. This operation will be denoted by [[z]]← [[x]] + c.

The way we decide which party adds c to their share can be done arbitrarily. For the sake

of consistency, we use an asymmetric bit which indicates which party does one operation,

14

while the other party omits the operation. The parties asymmetric bit is agreed upon by the

parties before any computations occur.

3.3.3 Secure Multiplication and Multiplication Triples

A non-trivial operation is secure multiplication of secret shared numbers. There are occasions

in πXT where we securely perform a dot product, or square a shared value. Among a few

others, these operations require Alice and Bob to compute secret shares of products [[x · y]],

starting from secret shares of [[x]] and [[y]]. To this end, Alice and Bob use multiplication

triples, consisting of three secret shared values provided by the TI, a, b and c. Values a and

b are chosen at random, while c = a · b. The use of these triples allow Alice and Bob to

securely perform multiplication in an efficient manner, as we explain next (see also [8]).

Consider numbers x and y that are secret shared between Alice and Bob. Alice and Bob

can locally compute [[d]] = [[x]]− [[a]] and [[e]] = [[y]]− [[b]] with their respective shares. Because

Alice and Bob used their shares of a, b as OTPs, they can make their shares of d and e public

without revealing anything about their shares of x, y, a, or b. Now, consider the following:

x · y = ((x− a) + a)((y − b) + b)

= (d+ a)(e+ b)

= de+ db+ ae+ ab

= de+ db+ ae+ c

(3.3)

This identity allows the parties to compute shares of the product x · y. Specifically, one

party computes d[[b]] + e[[a]] + [[c]], and another computes de+ d[[b]] + e[[a]] + [[c]]. Which party

retains the de value on their end will depend on the asymmetric bit.

All protocols we perform can be broken down into secure multiplications and additions

of secret shared values. By breaking our protocols down to these atomic operations, we can

guarantee security of each party’s data, assuming they do not deviate from these protocols.

15

3.3.4 Comparison of Secret Shared Values

An essential operation in πXT is calculating relative ordering between values. Securely or-

dering elements allows us to determine what the best split for each node is, and whether or

not we satisfy an early stopping condition. We define the operator ≥? on the operands [[x]],

[[y]] in the following way:

[[x]] ≥? [[y]] = [[1]]2 if x ≥ y, else [[x]] ≥? [[y]] = [[0]]2.

Note that the outputs of the ≥? operator are modulo 2, representing a boolean result.

The ≥? operator is not functionality that is innate to additive sharing, but instead requires

a somewhat complicated protocol to function. The protocol that simulates the result of ≥?

will be referred to as πGEQ. At a high level, πGEQ takes the difference between two values

x, y, and then observes the most significant bit. Because we use a two’s compliment scheme,

if the most significant bit of y − x is 1, then x ≥ y, otherwise y > x. As parameters, πGEQ

takes the parties secret shared values [[x]] and [[y]], and then outputs a single secret share bit

modulo 2. The details regarding the protocol are outside of the scope of this paper, and as

such, we will use it for the remainder of this paper as a black box.

Because πGEQ returns a [[0]]2 or a [[1]]2, we can not immediately use the results. Recall

that most additive shares are in the ring Zq, where q = 2λ. Thus, we must convert the result

of πGEQ from Z2 to Zq. Unfortunately, because the rings zeros do not match up, we can’t

just declare our values in Z2 to be in the ring Zq. Suppose we did try to seamlessly go from

Z2 to Zq. Further suppose the parties share a bit [[b]]2 := (b0, b1), where the notation

[[x]] := (x0, x1) indicate that party 0 has the share of x as x0, and party 1 has their share

as x1. Consider the following cases:

Case 1. b0 = b1 = 0: Given that both shares are 0, taking the sum b0 + b1 in Zq retains

the original value in Z2.

Case 2. b0 = 1, b1 = 0 or b0 = 0, b1 = 1: Similar to case 1, if the parties are to take the

sum of their shares in Zq, the original value from Z2 holds.

16

Case 3. b0 = b1 = 1: Taking the sum of the parties’ shares in Zq would result in a value of

2; however, the sum of the values in Z2 should be 0.

Case 3 tells us that we can’t go from one ring to another so easily. Thus, we introduce

π2toQ, which is defined in protocol 2.

Protocol 2: Secure Protocol π2toQ converts a secret bit from a Z2 sharing to a Zq
sharing.

Input : [[b]]2 := (b0, b1)

Output: [[b]]q

1 Alice creates the sharing [[b0]]q = (b0, 0)

2 Bob creates the sharing [[b1]]q = (0, b1)

3 [[b]]q ← [[b0]]q + [[b1]]q − 2 · [[b0]]q · [[b1]]q
4 return [[b]]q

Note that for case 1, the expression [[b0]]q+[[b1]]q−2·[[b0]]q ·[[b1]]q turns into 0+0−2·0·0 = 0,

which is in fact the correct value. For case 2, we get 1 + 0−2 ·1 ·0 = 1, which is also correct.

Finally, case 3 is also satisfied, giving us 1 + 1 − 2 · 1 · 1 = 0. Since the protocol has been

shown to output the correct value for all three cases, we have demonstrated correctness. By

feeding our results from πGEQ to π2toQ, we will be able to take the secure product between

our comparison results and additive shared values from Zq, which will be important in the

pre-processing and training phase.

3.3.5 Simple MPC protocols

There are two simple protocols that we have not gone over yet, but are important to πXT.

The first protocol is the secure element wise product between vectors, πH, also known as

the Hadamard product. Since we have already developed secure multiplication, πH follows

naturally. To preform πH, we take the secure product of parallel elements of two arrays,

17

and return the shares of the product in a third array. The second protocol is the truncation

protocol, πtrunc. Recall that after the product of two secret shared values, we have to preform

truncation because the fractional bits double from a to 2a. Fortunately, πtrunc can be done

locally by right-shifting the secret shared value by a bits.

3.3.6 Dummy Operations to Protect against Side Channel Attacks

In chapters 4 and 5, we will see many MPC protocols that appear to be doing redundant

work. For example, while training a DT, if we satisfy an early stopping condition, we will

have to continue the training as if a stopping condition has not yet been met. An in-the-clear

algorithm would not have to do this; however, this is a vital process in an MPC setting. If πXT

were to stop training a tree when an early stopping condition was met, it would inform the

parties about the uniformity of the data at that iteration of the training algorithm, and thus

could leak information about the distribution of the data. In an honest-but-curious setting,

nothing should be revealed except for what is agreed to be public knowledge, and what one

can extrapolate about the data given the classification of an unseen instance. Typically

speaking, anything in the algorithm that could reveal information about the flow of logic in

the program should be avoided.

3.4 Communication Between Parties

3.4.1 Optimizing MPC Protocols

In MPC, operations are typically distinguished between an online and an offline phase.

Online phases require communication between the parties, whereas offline phases just require

computation that is local to each party’s machine. Operations such as multiplication of secret

shared values require parties to communicate. Communication tends to be the most time

consuming activity in a MPC algorithm. Because of this, when we discuss the efficiency of

an algorithm, we will typically do so in terms of communication complexity.

18

3.4.2 Batching Operations

In attempt to reduce communication complexity, we batch operations that require commu-

nication into a single function call. This allows us to significantly reduce the communication

complexity by a linear factor in most cases. Although not specified in the upcoming pseudo-

code, all protocols in this thesis that require communication can be batched in some way,

and are batched in the implementation of πXT.

19

Chapter 4

PRE-PROCESSING

4.1 Overview

In this chapter, we present the first part of our πXT protocol for secure training of extra

trees classifiers, the pre-processing phase. The pre-processing phase is made up from several

protocols that allow us to take the burden off of the actual tree training phase that will be

discussed in Chapter 5.

4.1.1 Adaptation from Original Extra Trees Algorithm

We altered some aspects of the original extra trees algorithm for efficiency. Possibly the most

substantial change from the extra trees algorithm in-the-clear to the MPC based protocol πXT

are the random splits at each node. In the extra trees algorithm, while growing a decision tree

(DT) one dynamically selects a random pool of attributes to split on at each node without

replacement. In πXT, not only do we not remove attributes, we do not change the pool of

attributes we consider at each node within a tree. Instead, each node in a single DT has to

choose its split from the same set of attributes chosen for that DT during the pre-procssing

phase, i.e. we select a static random pool of attributes to split on per tree instead of per

node. This change drastically decreases the time πXT takes. Securely constructing sets of

attributes to split on for a single node has linear communication complexity in respect to

the number of attributes per split, so constructing such sets for every node in the ensemble

is an expensive operation. We’ll see in Chapter 6 that this choice can reduce our accuracy

for ensembles where we do not consider many attributes for each split, but we can regain

our accuracy by increasing the number of attributes at each split while still maintaining

competitive runtimes.

20

4.2 Pre-Processing with No Security

To get intuition in regards to the pre-processing phase, we will first discuss the altered

algorithm without any security. To start, we need to process all of the columns (attributes)

of data and find their minimum and maximum values. Continuing with the example from

Chapter 2, we can find the minimum and maximum value of each column in the data set.

A1 A2 A3 A4 label

1.5 1.2 1.0 1.0 b

1.7 1.5 2.2 1.4 b

2.1 1.2 3.0 1.6 b

2.6 2.2 1.4 2.0 r

2.7 2.7 2.0 2.4 r

4.8 3.9 3.4 2.6 y

2.2 1.0 1.2 3.0 b

2.4 2.6 2.4 3.4 b

3.8 4.1 3.6 3.6 y

Define the 2-tuple (min,max)i to be the minimum and maximum values of the attribute

Ai. We have (1.5, 4.8)1, (1.0, 4.1)2, (1.0, 3.6)3, and (1.0, 3.6)4. We then randomly select k

attributes which will act as our candidate attributes to split on. Suppose we select columns

1 and 4, giving us

21

A1 A4

1.5 1.0

1.7 1.4

2.1 1.6

2.6 2.0

2.7 2.4

4.8 2.6

2.2 3.0

2.4 3.4

3.8 3.6

For each candidate attribute aj, we will create a random threshold αj between the mini-

mum and maximum values in aj. For our example, a1 corresponds to A1, and a2 corresponds

to A4. Let us suppose that α1 = 3.6, and α2 = 2.2. We can use αj to effectively turn the

numerical attribute aj into a binary categorical attribute. Numerical values in aj that are

less than αj are replaced with a zero, and values greater than or equal to αj are replaced

with a one. In our example, a1 and a2 would turn into the following:

a1 a2

0 0

0 0

0 0

0 0

0 1

1 1

0 1

0 1

1 1

22

We can now use the binarized columns to train a DT using Quinlan’s ID3 algorithm

[10], a well-known algorithm to train a DT with categorical attributes (of which binarized

attributes are a special case). Detailed pseudo-code for the pre-processing in-the-clear is

provided in Algorithm 3. We repeat the steps mentioned here for as many trees as we want

in our ensemble.

4.3 Secure Pre-Processing in the Honest-but-Curious Setting

4.3.1 Secure MinMax Protocol

Before we present πXT, we will first go over a protocol that will allow us to find the minimum

and maximum values for each attribute in a privacy-preserving manner. In the previous

section, finding the range of values of an attribute was simple. Here, however, all values

are secret shared between the two parties, Alice and Bob. Thus, we will have to use a

protocol with communication in order to discern the minimum and maximum values in

each column. To this end, we introduce the πminmax protocol, described in Protocol 4. The

protocol describes a naive way of computing the min and max values in a single column.

Lines 1, 2, 3, 5, 6 and 8 of πminmax require communication between the parties, giving us

linear communication complexity in terms of the number of values of elements in the list.

An optimization can be made in the communication rounds by comparing secret shares

pairwise in a batching πGEQ protocol. For instance, suppose we have n values to process.

Instead of comparing a value [[di]] against the proposed min and max like in lines 7 and

8, we compare all ordered pairs ([[d1]], [[d2]])...([[dn−1]], [[dn]]) in a single batch. The half of

the values that were ≥ to their counterpart would then all be compared to each other in

the proceeding batching comparison, and the other half would all be compared together in

the same batching scheme. For n of odd parity, we will simply omit the last element from

comparisons until adding it back in would make for an even number of values to compare.

This proposed batching scheme would allow us to find the minimum and maximum values

for each individual attribute in the data set with logarithmic communication complexity in

23

Algorithm 3: Adapted Algorithm for Training an Extra-Trees Classifier, with De-

tailed Pre-processing Steps

Input : A training set S with continuous data and n samples (each sample has f

features), the number k of features to consider in each tree, the number m

of trees in the ensemble, the depth d of each tree.

Output: An ensemble of trees XT = t1, . . . , tm.

1 For each feature j, find its minimum and maximum values, minj and maxj.

2 for i← 1 to m do

3 Select k random, distinct indexes j1, . . . , jk ∈ {1, . . . , f}.

4 for `← 1 to k do

5 For a uniformly random r ∈ (0, 1), α` ← r · (maxj` −minj`) + minj` .

6 for s← 1 to n do

7 if S[s, j`] ≥ α` then

8 S ′[s, `]← 1

9 else

10 S ′[s, `]← 0

11 end

12 end

13 end

14 Train a decision tree ti of depth d on S ′ using ID3.

15 end

16 return XT = t1, . . . , tm.

24

Protocol 4: Secure Min/Max-Finding Protocol πminmax

Input : [[D]], number n of elements in [[D]]

Output: [[dmin]], [[dmax]]

1 Let [[≥?]]← π2toQ(πGEQ([[d2]], [[d1]]))

2 Let [[dmin]]← [[≥?]] · [[d1]] + (1− [[≥?]]) · [[d2]]

3 Let [[dmax]]← [[≥?]] · [[d2]] + (1− [[≥?]]) · [[d1]]

4 for i← 3 to n do

5 [[≥?
min]]← π2toQ(πGEQ([[di]], [[dmin]]))

6 [[≥?
max]]← π2toQ(πGEQ([[di]], [[dmax]]))

7 [[dmin]]← [[≥?
min]] · [[dmin]] + (1− [[≥?

min]]) · [[di]]

8 [[dmax]]← [[≥?
max]] · [[di]] + (1− [[≥?

max]]) · [[dmax]]

9 end

10 return [[dmin]], [[dmax]]

terms of the total number of attributes. Further optimizations can be performed by batching

every attribute into πminmax. All optimizations mentioned are implemented in the πXT source

code.

4.3.2 Secure Pre-Processing Protocol

The πXT algorithm is given in pseudo-code as Protocol 5. Lines 1-12 of the pseudo-code

describe the pre-processing phase, while line 13 involves the training phase. Note that

despite introducing a pre-processing phase, which the original extra trees algorithm did not

have, the πXT protocol is logically equivalent to the original extra trees algorithm; barring

the few modifications we have made for efficiency, which can easily be re-implemented into

πXT if desired. Line 1 of the protocol starts us off with an offline phase, where the TI

produces feature selection matrices (FSMs), where the word feature is used synonymously

with attribute. These matrices consist of [[0]]’s and [[1]]’s, and among other things, will allow

25

us to securely extract certain columns from the data set. In line 4, the multiplication is in

reference to matrix multiplication between the secret shared data set [[S]] of size n× f , and

a FSM of size f × k, where n is the number of instances in the data set, f is the number

of attribute or feature columns in the data set, and k is the number of features we consider

at each split. So for example, suppose that Alice and Bob have shares of the data set from

Chapter 2. If we define Q to be the function from equation 3.1 that maps real values r to

Zq, the parties’ sharings of the attribute values would look like the following.

A1 A2 A3 A4

[[Q(1.5)]] [[Q(1.2)]] [[Q(1.0)]] [[Q(1.0)]]

[[Q(1.7)]] [[Q(1.5)]] [[Q(2.2)]] [[Q(1.4)]]

[[Q(2.1)]] [[Q(1.2)]] [[Q(3.0)]] [[Q(1.6)]]

[[Q(2.6)]] [[Q(2.2)]] [[Q(1.4)]] [[Q(2.0)]]

[[Q(2.7)]] [[Q(2.7)]] [[Q(2.0)]] [[Q(2.4)]]

[[Q(4.8)]] [[Q(3.9)]] [[Q(3.4)]] [[Q(2.6)]]

[[Q(2.2)]] [[Q(1.0)]] [[Q(1.2)]] [[Q(3.0)]]

[[Q(2.4)]] [[Q(2.6)]] [[Q(2.4)]] [[Q(3.4)]]

[[Q(3.8)]] [[Q(4.1)]] [[Q(3.6)]] [[Q(3.6)]]

Then, let us suppose that the TI from line 1 of the protocol randomly selected the first and

the third column to extract to create a subset of data for the i′th tree in the ensemble. The

parties would have a sharing of the following FSM, denoted as [[FS(i)]].

[[FS(i)]] =

[[1]] [[0]]

[[0]] [[0]]

[[0]] [[1]]

[[0]] [[0]]

Let the attribute values above describe a secret shared data set [[S]]. The product [[S]]·[[FS(i)]]

would result in a vertically partitioned secret shared subset of the data set of size n × k as

26

demonstrated below.

[[Q(1.5)]] [[Q(1.2)]] [[Q(1.0)]] [[Q(1.0)]]

[[Q(1.7)]] [[Q(1.5)]] [[Q(2.2)]] [[Q(1.4)]]

[[Q(2.1)]] [[Q(1.2)]] [[Q(3.0)]] [[Q(1.6)]]

[[Q(2.6)]] [[Q(2.2)]] [[Q(1.4)]] [[Q(2.0)]]

[[Q(2.7)]] [[Q(2.7)]] [[Q(2.0)]] [[Q(2.4)]]

[[Q(4.8)]] [[Q(3.9)]] [[Q(3.4)]] [[Q(2.6)]]

[[Q(2.2)]] [[Q(1.0)]] [[Q(1.2)]] [[Q(3.0)]]

[[Q(2.4)]] [[Q(2.6)]] [[Q(2.4)]] [[Q(3.4)]]

[[Q(3.8)]] [[Q(4.1)]] [[Q(3.6)]] [[Q(3.6)]]

·

[[1]] [[0]]

[[0]] [[0]]

[[0]] [[1]]

[[0]] [[0]]

 =

[[Q(1.5)]] [[Q(1.0)]]

[[Q(1.7)]] [[Q(2.2)]]

[[Q(2.1)]] [[Q(3.0)]]

[[Q(2.6)]] [[Q(1.4)]]

[[Q(2.7)]] [[Q(2.0)]]

[[Q(4.8)]] [[Q(3.4)]]

[[Q(2.2)]] [[Q(1.2)]]

[[Q(2.4)]] [[Q(2.4)]]

[[Q(3.8)]] [[Q(3.6)]]

We will later binarize this subset of the data as we did in Section 4.2. By executing line 2,

the parties Alice and Bob calculate the minimum and maximum values of each column and

stores the values into the vectors [[min]] and [[max]]. In our running example, we’d have

[[min]] = ([[Q(1.5)]], [[Q(1.2)]], [[Q(1.0)]], [[Q(1.0)]]) ,

[[max]] = ([[Q(4.8)]], [[Q(3.9)]], [[Q(3.6)]], [[Q(3.6)]]) .

Line 5 grabs a slice of random ratios generated by the TI which are approximately equivalent

to r ∈ (0, 1) in R. We approximate r with [1, 2a−1] in the ring. Recall that the value a is in

reference to the quantity of bits we reserve for the decimal portion of our ring values. Thus,

2a − 1 is the largest value in the ring less than 1 ∈ R. Line 6 then uses these random ratios

to construct a vector [[α]] consisting of values that will allow us to later split the columns

into two categories, values < than the split, and values ≥ than the split. To calculate [[α]],

Alice and Bob start by taking the difference between the maxiumum and minimum values

of each column. In our example, this would result in

[[max]]− [[min]] = [[range]] = ([[Q(3.3)]], [[Q(2.7)]], [[Q(2.6)]], [[Q(2.6)]]) .

27

Note that depending on our value for a, the difference between two values such as [[Q(4.8)]]−

[[Q(1.5)]], may not exactly result in [[Q(3.3)]]. This is because there may not be enough

fractional bits reserved for the true value of the difference. However, the previously mentioned

difference should sufficiently approximate [[Q(3.3)]] if it is not directly equal. We can then

use FS(i) to securely extract the values from [[range]] that correspond to the columns of

our subset of data. In other words, the parties calculate [[range]] · [[FS(i)]], which gives us

([[Q(3.3)]], [[Q(2.6)]]), the first and third values in [[range]]. We then use the Hadamard product

πH to take the product between the random ratios and the [[range]] values as dictated by

FS(i), after which we will have to truncate the products with a truncation protocol, πtrunc.

Truncation is necessary because the bits dedicated to the decimals would have doubled from

a to 2a. Finally, having the parties add [[min]] to the product as indicated by FS(i) guarantees

that there are k values in the parties share of [[α]], all between the minimum and maximum

values from the columns in which they were derived from. Lines 9 and 10 of Protocol 5 are

logically equivalent to lines 8 and 10 from Algorithm 3 in that they distribute values that

binarize the data set to allow us to train DTs. The primary difference is in line 10 of the

protocol: we also construct the negation of the binarized set. We do this because having the

negation of the set available is helpful during the training phase. Note that every for loop

in the protocol can be replaced by batched operations, significantly reducing communication

complexity. We train our DTs with a variant of a secure version of the ID3 algorithm, πSID3T,

which we will discuss in the next chapter. By the end of the pre-processing phase, each party

will have shares of the initial state of several binarized column-wise subsets of [[S]], where

each subset is dependent on the random features selected for that tree by the TI.

28

Protocol 5: Protocol for Securely Training an Extra-Trees Classifier πXT
Input : A secret shared training set [[S]] with continuous data and n samples (each

sample has f features), the number k of features to consider in each tree,

the number m of trees in the ensemble, the depth d of each tree.

Output: A secret shared ensemble of trees [[XT]] = [[t1]], . . . , [[tm]].

1 (Offline Phase) The TI secret shares m random 0/1-valued feature selection matrices

[[FS(1)]], . . . , [[FS(m)]] of size f × k, where each column contains a single 1, and no

two rows have more than a single 1. The TI also distributes k ·m uniformly

random ratios [[r(1)]], . . . , [[r(k·m)]] ∈ [1, 2a − 1] (which approximates r ∈ (0, 1) in R).

2 Compute the vectors [[min]] and [[max]], by using ([[minj]], [[maxj]])← πminmax([[Sj]],n)

for each column Sj (j = 1, . . . , f) of S.

3 for i← 1 to m do

4 [[SFS]]← [[S]] · [[FS(i)]]

5 [[r]]← ([[r((i−1)k+1)]], . . . , [[r(ik)]])

6 [[α]]← πtrunc(πH([[r]], ([[max]]− [[min]]) · [[FS(i)]])) + [[min]] · [[FS(i)]]

7 for `← 1 to k do

8 for p← 1 to n do

9 [[D[p, `, 1]]]2 ← πGEQ([[SFS[p, `]]], [[α[`]]])

10 [[D[p, `, 0]]]2 ← 1− [[D[p, `, 1]]]2

11 end

12 end

13 Let [[ti]] be the decision tree of depth d trained using πSID3T with the data set

[[D]]2.

14 end

15 return [[XT]] = [[t1]], . . . , [[tm]].

29

Chapter 5

TRAINING THE ENSEMBLE

After the pre-processing phase, each tree we wish to train in the ensemble will be trained

on a column-wise subset of the original data set, where the attribute columns purely consist

of [[0]]′s and [[1]]′s, effectively turning each column into a binary categorical column. Given

this representation of the data, we can efficiently train each tree in the ensemble with πSID3T

(see below).

5.1 Training a Decision Tree

πSID3T was developed by Sebastiaan de Hoogh, Berry Schoenmakers, Ping Chen, and Harm

op den Akker in their paper, Practical Secure Decision Tree Learning in a Teletreatment

Application (see [6]). As the title suggests, the protocol was constructed to be a practical

MPC protocol based off of the popular ID3 algorithm for training DTs in-the-clear. The

protocol works by taking data with categorical attributes and determining at each step which

attribute will maximize the protocol’s scoring metric. In determining the best attribute to

split on, we have to consider each unique value in each attribute. Fortunately, our columns

only have two different values, namely 0 and 1. Furthermore, we’ve reduced the amount of

features each tree is trained on from the original number f , to the amount of features we

consider at each split k, making the attribute scoring phase fairly inexpensive. The way in

which we score our splits is with a variant of the Gini index constructed by Hoogh et. al.,

which is described in the authors’ paper.

30

5.2 Modification of πSID3T

5.2.1 Concealing the shape of the tree

In our honest-but-curious setting, the original πSID3T protocol has one aspect which violates

the assumption, that is, it can reveal the shape of the DT. This is a violation because it can

reveal which nodes split on which attributes. Since each branch in a DT will correspond to a

single value in an attribute, it can be easily inferred by observing how many branches come

from each node which attribute the node splits on. This allows parties to infer the distribution

of their combined data, which is meant to be kept secret. The original authors did this for

the sake of practicality. To stay true to the original ID3 algorithm, the πSID3T protocol needs

to create a single branch per unique value in each column of data. To truly hide the structure

of the tree in this scenario, one would likely have to add redundant branches to each non-leaf

node, greater than or equal to the maximum amount of unique values among all categorical

attributes. Lets say that, for example, we have 4 categorical attributes, 3 of which have 5

unique values associated to them, and 1 which has 50 unique values associated to it. Then,

to truly hide which node splits on what attribute, we would have to let each node break off

into at least 50 branches. For the three attributes that only had 5 unique values, the node

that splits off of them would have no less than 45 redundant branches leading to dummy

nodes. We would have to increase the number of branches from 50 to a higher number if we

also wanted to conceal how many unique values for each attribute the parties have. Since

the trees are recursively built from each node, introducing these dummy nodes would create

a giant tree structure that could take weeks to train depending on the data set.

The issue that the original πSID3T algorithm has does not affect us to the same degree.

Because each column of our data only has two unique values, we exclusively construct binary

trees. Furthermore, in practice, ensembles of many shallow trees tend to provide similar

accuracy as ensembles with deep trees, hence it is common to force the trees in an ensemble

to be shallow by making sure they do not grow past a certain depth. This gives us the

opportunity to hide the structure of our tree by adding dummy nodes without creating giant

31

tree structures. Thus, we make the minor modification/improvement to πSID3T that makes it

exclusively produce full trees that grow to a predetermined depth d which is agreed upon by

the parties before training. This allows us to remain in a honest-but-curious setting without

sacrificing too much time efficiency.

5.2.2 Stopping conditions

Although we always grow our trees to a certain maximum depth, each tree still may hit

an early stopping condition, in which case the node that hit the condition should classify

the data, and dummy nodes should be created under it to conceal the shape of the tree.

The original extra trees algorithm stops growing a tree if one of the following three things

happens: (1) all of the class labels in the nodes’ subset of data are the same, (2) the amount

of data (rows) that has reached the node is under a certain threshold, or (3) each column

of data only has one distinct value remaining. The first two stopping conditions are kept in

our training algorithm, but the last stopping condition was removed. Given our preference

for shorter DTs, we do not typically split the data very frequently, making it unlikely that

the last stopping condition is satisfied. As such, the stopping condition was removed for the

sake of saving time during the training phase.

5.2.3 Determining which nodes classify

The introduction of growing our DTs to some full depth d, all the while having early stop-

ping conditions, presents a new problem, namely when Alice and Bob want to classify new

instances with the trained DT in a privacy-preserving manner. If the DT was trained with

the original πSID3T protocol, all of the classifications would reside in the leaf nodes; however,

in our rendition of πSID3T, many of the leaf nodes will be dummy nodes which should not

label the data. To remedy this, a secret shared classification bit is created for each node. A

classification bit of 1 tells us that the node should label, a value of 0 tells us not to label.

Take the following DT with its classification bits shown in each node as an example.

32

[[0]]

[[1]]

[[0]] [[0]]

[[0]]

[[1]] [[1]]

The tree above tells us that the left child of the root labels the data, and its children

simply act as dummy nodes. In contrast, the right child of the root does not label the data,

but its children do. Every node in the tree attempts to label the data based on the most

frequent label of the training examples that have reached the node during training; Alice

and Bob determine this information and store the most frequent label as additive secret

shares during the training process. With that being said, we only care about the nodes with

classification bits of 1, as this indicates that the node should actually label the data. For

Alice and Bob to securely classify unseen instances of data with our ensemble, we may use

methods similar to the one described in the paper Efficient and Private Scoring of Decision

Trees, Support Vector Machines and Logistic Regression Models based on Pre-Computation

(see [5]) along with our classification bits.

33

Chapter 6

RESULTS

We implemented our secure extra trees algorithm in Rust 1. With our implementation, we

performed a series of experiments to evaluate the accuracy of πXT compared to the original

extra trees algorithm (see Table 6.2), and its runtime (see Table 6.1). The runtime results

were obtained on AWS c5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory. Each of

the parties ran on a separate machine (connected with a Gigabit Ethernet network), which

means that the results in Table 6.1 cover communication time in addition to computation

time.

Table 6.1 contains accuracy and runtime results for πXT and accuracy for extra trees

in-the-clear on three different datasets that vary in terms of the number of instances and

the total number of features. The results in Table 6.1 were obtained with an ensemble of

100 trees all of depth 1. Since the ensemble is very simple, it gives us a good idea of how

our algorithm performs in general. DTs of depth 1 sometimes have a hard time classifying

the data. In fact, the ensembles obtained for the ECG and lower back pain data always

voted for the most frequent label, giving us majority baseline results for accuracy. Those

two datasets can be tough to classify correctly, even for the original extra trees algorithm

that is implemented in sklearn2. Notice that the accuracy from the secure πXT algorithm,

and the original in-the-clear algorithm have a 2% discrepancy in accuracy. This difference

can be attributed to the fact that the way our nodes classify data is by identifying the most

frequent class label, and setting its vote to that. The algorithm in-the-clear simply returns

the frequency of each class label, which allows us to weight votes. The latter sometimes

1https://bitbucket.org/uwtppml

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

34

preforms slightly better than the one we currently have implemented. Our protocol πXT can

easily be switched to returning class frequencies if desired.

πXT in-the-clear

data set # instances # features Acc Time Acc

BC: Breast Cancer 1 569 30 0.84 1.1 0.86

ECG: ECG Heartbeat 2 14,552 187 0.72 63.0 0.72

BACK: Lower Back Pain Symptoms 3 310 12 0.68 0.5 0.68

Table 6.1: Accuracy obtained with 5-fold cross-validation, and runtime results (in min) for
secure training of extra trees classifiers. The max tree depth d is set to 1 with a total of
m = 100 trees in the ensemble, and the number features per split is k ≈

√
f , where f is the

total number of features

Recall that, for efficiency, instead of creating a subset of data for each node in the

ensemble to be trained on, we create a single subset of data for each tree to be trained

on. In the case where our depth d is equal to 1, these approaches are equivalent since we

only ever make one split in the data. For d ≥ 2, this change has an increased chance to

effect our accuracy, but in all of our experiments, we’ve been able to regain this accuracy

by adjusting the hyperparameters. Table 6.2 demonstrates this idea. In the Table, we see

a large discrepancy in accuracy between making subsets for each node, or using the original

extra-trees classifier, and making subsets for each tree when we only consider 5 features per

split. This accuracy is regained by increasing the number of features. The initial drop in

accuracy is likely because for small feature counts, we run the risk of randomly selecting

subsets of data that do not describe the rest of the data in a meaningful way. When we

create subsets per node, this is not a big issue since it is only one node that has a poor

subset. We do not have this luxury when we create a single subset of data for each tree to

1https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

2https://www.kaggle.com/shayanfazeli/heartbeat

3https://www.kaggle.com/sammy123/lower-back-pain-symptoms-dataset

35

πXT with discr. per tree πXT with discr. per node in-the-clear

k Acc Time Acc Time Acc

5 82.3 0.6 92.5 3.1 93.54

10 93.54 1.3 94 8 94.69

15 94.69 1.8 94.69 11.5 94

Table 6.2: Accuracy and runtime results (in min) of πXT protocol for secure training of an
extra-trees classifier and accuracy for the in-the-clear algorithm on the Breast Cancer data
set with a max depth of 3, and 50 trees in the ensemble

be trained on. In this case, if the subset contains poor features, the tree is stuck with the

subset for its entire duration of training, giving us a relatively high probability of having

trees that do not classify the data well. By increasing the number of features in each subset,

we reduce the chance of this happening, until eventually there is no noticeable difference

between discretizing per tree, discretizing per node, and the original extra-trees algorithms

results.

An alternative look into the accuracy between discretizing per tree and per node is shown

in Figure 6.1. As seen in Figure 6.1, we can obtain the same accuracy by discretizing per

node when we discretize per tree. Figure 6.2 shows the time we save by discretizing per tree

as opposed to per node.

36

Figure 6.1: Comparing accuracy of discretizing per tree and discretizing per node on the
Breast Cancer data set with a max depth of 3, 50 trees in the ensemble, and varying
features per split

Given Figure 6.2, it is clear that we save alot of time by discretizing per tree as opposed

to per node. When we discretize per node, we have to make a subset of the data for

each node in the ensemble. The amount of nodes in the tree are exponentially dependent

on d. Thus, creating these additional subsets requires the parties to jointly binarize an

exponential amount of datasets whose amount of columns are dependent on the features per

split. Alternatively, discretizing per tree only requires us to binarize as many subsets of

data as there are trees in the ensemble. Thus, it is ideal to discretize per tree, unless it is

highly suspected that the dataset our algorithm is trained on will not allow for a meaningful

classifier when discretizing per tree.

37

Figure 6.2: Comparing accuracy of discretizing per tree and discretizing per node on the
Breast Cancer data set with a max depth of 3, 50 trees in the ensemble, and varying
features per split

38

Chapter 7

CONCLUSIONS

In this thesis, we proposed πXT, the first Multiparty Computation (MPC) based protocol

for training Extra Trees classifiers in a privacy-preserving manner. πXT is composed of MPC

sub-protocols that aggregate data between two parties to jointly compute a machine learning

(ML) model without requiring the parties to divulge their data to one another. This has

important implications, as there exist many real life scenarios when two data owners may

want to combine their data together to train a state-of-the art ML model, but do not wish

to reveal their data to each other.

Extra Trees classifiers are a kind of decision tree ensembles. Most existing work on

privacy-preserving training of decision trees with MPC has been done for datasets with

categorical input attributes. In many data science applications, data is continuous instead

of categorical, or a mix of both. Prior to our work, the few existing proposals for MPC

based training of decision trees on continuous attributes were based off of Quinlan’s C4.5

algorithm, which requires sorting the data, a very expensive operation in the context of

MPC. Thanks to its random nature, the Extremely Randomized Trees algorithm allows to

create decision tree ensembles on data with continuous input attributes without the need to

sort the data. This makes the Extra Trees algorithm an “MPC-friendly” technique to train

decision tree ensembles on continuous valued data, inspiring us to develop an MPC protocol

to train Extra Trees classifiers in a fully privacy-preserving manner.

To this end, we used an additive sharing scheme which allows parties to securely add and

multiply shares of data together. We then broke up our πXT protocol into a pre-processing

phase which we constructed ourselves (Chapter 4), and an already existing secure tree train-

ing algorithm, πSID3T, which we only had to make a single improvement to in order to remain

39

in our honest-but-curious setting (Chapter 5). The purpose of the pre-processing phase was

to create vertically partitioned subsets of the data, and then binarize the subsets according

to some random splits. By binarizing the subsets of data, we transformed the subsets from

continuous data to binary categorical data which was used to train a DT with πSID3T. The

modification made to πSID3T was to hide the true structure of the tree by making each tree

complete. We did this by creating dummy nodes under any node that truly classifies the

data. This modification in practice does not have much effect on the runtimes for training

and inference, since trees in ensembles tend to be shallow anyway, and all of our trees are

binary trees. This allowed us to create a privacy-preserving machine learning (PPML) al-

gorithm that is fast enough to be used in practice (Chapter 6), and makes zero sacrifices

regarding information leakage.

There are many avenues for future work. One obvious way to extend πXT is to make

it work for an arbitrary number of parties. Some of our protocols, such as the comparison

protocol πGEQ, are only designed for a two party setting, and extending this to work with an

arbitrary number of parties would require a different approach. Overcoming these hurdles

could allow our protocol to be viable in more scenarios. More future work could be to

extend πXT from an honest-but-curious setting to a malicious adversarial setting. Recall

that in the honest-but-curious setting, the parties follow the protocols, but try to learn any

additional information from the data that they could. In the malicious adversary setting,

parties actively deviate from protocols in order to gain as much knowledge about the other

parties’ data as they can and/or to cause the protocol to produce wrong results. By guarding

against these sort of attacks, we could make our algorithm far safer to use at the cost of time

efficiency.

40

BIBLIOGRAPHY

[1] Donald Beaver. Commodity-based cryptography. In STOC, volume 97, pages 446–455,
1997.

[2] Gopal Behera. Privacy preserving C4.5 using Gini index. In 2nd National Conference
on Emerging Trends and Applications in Computer Science, pages 1–4, 2011.

[3] Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, Davis Railsback, Jianwei
Shen, and Ariel Todoki. High performance logistic regression for privacy-preserving
genome analysis. CoRR, abs/2002.05377, 2020.

[4] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty Computa-
tion and Secret Sharing. Cambridge University Press, 2015.

[5] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, Anderson Nascimento, Wing-
Sea Poon, and Stacey Truex. Efficient and private scoring of decision trees, support
vector machines and logistic regression models based on pre-computation. IEEE Trans-
actions on Dependable and Secure Computing, 16(2):217–230, 2019.

[6] Sebastiaan de Hoogh, Berry Schoenmakers, Ping Chen, and Harm op den Akker. Prac-
tical secure decision tree learning in a teletreatment application. In International Con-
ference on Financial Cryptography and Data Security, pages 179–194. Springer, 2014.

[7] Thomas G Dietterich. Ensemble methods in machine learning. In International Work-
shop on Multiple Classifier Systems, volume 1857 of LNCS, pages 1–15. Springer, 2000.

[8] David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. A pragmatic introduction
to secure multi-party computation. Foundations and Trends in Privacy and Security,
2(2-3):70–246, 2018.

[9] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. In
Machine Learning, pages 3–42. Machine Learning, 2006.

[10] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[11] J Ross Quinlan. C4.5: programs for machine learning. Elsevier, 2014.

41

[12] Yanguang Shen, Hui Shao, and Li Yang. Privacy preserving C4.5 algorithm over ver-
tically distributed datasets. In 2009 International Conference on Networks Security,
Wireless Communications and Trusted Computing, volume 2, pages 446–448. IEEE,
2009.

[13] Ming-Jun Xiao, Kai Han, Liu-Sheng Huang, and Jing-Yuan Li. Privacy preserving C4.5
algorithm over horizontally partitioned data. In 2006 Fifth International Conference on
Grid and Cooperative Computing (GCC’06), pages 78–85. IEEE, 2006.

