
Implications   of   Flow   Control   Methods   for   Serverless   Data   
Processing   Pipelines   

  

  
by   

  
Sterling   Quinn   

  
Supervised   by   Dr.   Wes   J.   Lloyd   

  
  

A   thesis   submitted   in   partial   fulfillment   of   the   departmental   honors   requirements     

for   the   degree   of   

  
Bachelors   of   Science   

  
Computer   Science   and   Systems   

  

University   of   Washington   Tacoma   
  

December   2020   
  

Presentation   of   work   given   on:   12/16/2020   
  
  
  

The   student   has   satisfactorily   completed   the   Senior   Thesis,   presentation   and   senior   elective   
course   requirements   for   CSS   Departmental   Honors.   

  
  

  

Faculty   advisor:   ___________________________________   Date__________ 12/16/2020_ __   
CSS   Program   Chair:   ________________________________   Date__________ 12/16/2020_ __       

  



© Copyright 2020 

Sterling H. Quinn   



Abstract  

Implications of Flow Control Methods for Serverless Data Processing Pipelines

Sterling Ho Quinn 
Supervised by Dr. Wes J. Lloyd

Serverless computing platforms offer a compelling option for developers to host applications

without configuring servers, shifting the burdens of scaling, handling hardware failures, and

guaranteeing availability to the cloud provider. Function-as-a-Service or FaaS is a popular            

delivery model of serverless computing where developers upload code to be executed in the              

cloud as short running stateless functions. FaaS platforms are well suited to host microservices,              

small modular applications that perform specific tasks encouraging code reuse and enabling

greater agility by reducing reliance on hard to change monolithic applications. Using smaller

functions to decompose sequential processing steps of larger tasks or workflows introduces the             

question of how to instrument individual function calls to orchestrate the original task or              

workflow. In this thesis, we examine the implications of using different methods to orchestrate              

the flow control of a serverless data processing pipeline composed as a set of independent

microservices. We performed experiments on the AWS Lambda FaaS platform and compared

how four different patterns of flow control affected the cost and performance of the pipeline.              

Methods of flow control include a virtual machine client, microservice controller, event-based           

triggers, and cloud-based state-machine. Overall we found that asynchronous methods led to            

lower orchestration costs and that event-based orchestration comes with a performance penalty.



TABLE OF CONTENTS 

Chapter 1. Introduction 1

1.1  Serverless Computing 1
1.2  Flow Control 2
1.3  Case Study 3

1.4  Research Questions 3

Chapter 2.  Background and Related Work 4

2.1 Serverless Function Development Choice Implications 4
2.2 Conceptual Issues with Serverless Flow Control 5

2.3 Comparison of FaaS Orchestration Systems 5

Chapter 3.  Serverless Application Flow Control 6

3.1 Overview 6
3.2 Billing 7

3.3 Metrics 8
3.4 Flow Control Methods 10

3.4.1 Client Flow Control 10

3.4.2 Step Functions 11
3.4.3 Microservice Controller 12

3.4.4 Event Based Triggers 13

Chapter 4.  Methodology 14

4.1  AWS Lambda 14
4.2 Transform Load Query Data Processing Pipeline 15
4.3  SAAF 16

4.4  Experiments 17

Chapter 5.  Results 19
5.1 EX-1 Overall Performance Comparison 19
5.2 EX-2 Cold Performance Comparison 21

5.3 EX-3 Lambda Functions Memory Size Comparison 22
5.4 EX-4 Microservice Controller Memory Size and Language Comparison 24

Chapter 6.  Conclusions 26
6.1 Flow Control Performance Comparison 26

6.2 Flow Control Development Perspectives 28
6.3 Outcomes 31

Bibliography 32



LIST OF FIGURES 

Figure 1. Diagram of pipeline orchestration using Amazon EC2 as the client 

Figure 2. Diagram of pipeline orchestration using AWS Step Functions 

Figure 3. Diagram of pipeline orchestration using a microservice controller 

Figure 4. Diagram of pipeline orchestration using Event Based Triggers

Figure 5. Pipeline runtime comparison of alternate flow control methods

Figure 6. Billed amount for across dataset sizes for different flow control methods 

Figure 7a. Pipeline runtime vs. memory reservation size 

Figure 7b. Pipeline data processing throughput vs. memory reservation size 

Figure 8a. Comparison of pipeline runtime for Java and Python microservice 

controller implementations 

 Figure 8b. Comparison of flow control costs for Java and Python microservice

controller implementations 

LIST OF TABLES 

Table 1. Price comparison for alternate flow control methods 

Table 2. Cold start latency comparison

Table 3. Comparison of capabilities of flow control methods



ACKNOWLEDGEMENTS 

This research is supported by the NSF Advanced Cyberinfrastructure Research Program           

(OAC-1849970), NIH grant R01GM126019, and the AWS Cloud Credits for Research program. 



1

CHAPTER 1. INTRODUCTION  

1.1 SERVERLESS COMPUTING 

Cloud computing’s popularity comes in part from the level of abstraction it offers             

organizations and developers. Instead of having to purchase and configure physical hardware,            

organizations can rely on cloud providers for server infrastructure, allowing them to focus more              

resources on their core business functions. A further level of abstraction is provided by serverless

computing platforms where the burden of provisioning and scaling infrastructure is placed on the

cloud provider. While serverless technology still leverages servers behind the scenes, many            

details regarding management of the servers are abstracted from the user and handled by the               

cloud provider. Users request services on demand, and are billed for only what they use. This can                 

reduce costs for workloads having variable user demand, removing the need to have always-on              

idle servers ready to handle spikes in traffic. With serverless technology, this responsibility to

respond to server failure or sudden spikes in traffic is shifted to the cloud provider.  

Function-as-a-Service (FaaS) is a serverless computing platform where developers         

provide code that is run in isolated sandboxes provisioned and managed on demand by the cloud                

provider. These sandboxes known as function instances, provide an isolated environment for the             

code to run guaranteeing consistent, stateless performance [1].

Amazon Web Services (AWS) is a leading provider of cloud computing services owning             

almost half of the publicly available cloud infrastructure in 2018 (47.8%), more than three times               

its closest competitor Microsoft Azure at (15.5%) [2]. This thesis leverages the AWS FaaS              

platform known as Lambda combined with additional AWS services to facilitate investigations.  



2

1.2 FLOW CONTROL

The move toward microservices is sweeping across technology companies [3]. A           

microservice is an application that handles a specific job and is only loosely coupled to other

services. This is in contrast to monolithic applications that encapsulate entire business processes             

in a single application. Microservices that accomplish common tasks can be reused by other              

developers and smaller modular pieces of software can be updated or changed more easily.              

Function-as-a-Service platforms have recently become a popular option for hosting          

microservices. These platforms excel at hosting and scaling independent microservices. When

adopting these platforms to host larger applications that aggregate microservices together to            

constitute a task or workflow, some method to orchestrate independent service calls is required.              

We will refer to these methods that instrument function call chains as “serverless application              

flow control” . Cloud providers offer different options for connecting services but it is unclear              

what tradeoffs come with each option. When choosing between different methods of flow control

for serverless functions, cost, performance, capability, and ease of development are factors to             

consider. Methods for remotely triggering serverless calls can have associated charges, while            

calling those functions from a desktop or laptop client is generally free. Using a cloud-based               

virtual machine will also come at a cost. If speed is the primary consideration, it isn’t clear how                  

latency varies between the different flow control options. The capabilities of each method must

also be considered. If data must be exchanged between functions, some flow control approaches              

facilitate the exchange more easily than others. Given that software developers time is extremely              

valuable, developers may consider the most economical option as the approach that requires the              

least effort promoting “ease of implementation” to be the highest priority requirement for some             

use cases.



3

1.3 CASE STUDY

We examine the implications of flow control for serverless applications by investigating            

four different methods of orchestrating a data processing pipeline:

1. Client Control: This method involves calling the individual pipeline steps synchronously           

from the developer’s computer or from a computer provisioned in the cloud. 

2. Microservice Controller: This method involves provisioning an additional serverless         

function to orchestrate the execution of the functions. 

3. State-Machine: This method offered by the cloud provider enables developers to define

a state-machine to describe function transitions and data flow. The cloud provider            

instruments a client based on the state-machine definition to invoke functions for each             

step of the pipeline or workflow. 

4. Event Based Triggers: Cloud providers also provide methods for defining ‘rules’ that           

will trigger serverless functions when a certain event occurs. These rules can be used to

orchestrate serverless pipelines. 

1.4 RESEARCH QUESTIONS 

In comparing these alternate methods of flow control, we investigate the following

research questions. Empirical questions include: 

RQ-1. (Performance) What are the performance implications for alternate methods of         

serverless application flow control? Specifically, how does pipeline runtime,         

latency, and data processing throughput vary?  

RQ-2. (Cost) What are the cost implications for alternate methods of serverless

application flow control?  



4

RQ-3. (Cold Start) What are the implications for cold start for alternate methods of             

serverless application flow control? Specifically, how does pipeline runtime,

latency, and data processing throughput vary when pipelines are run from a cold

state vs. warm? 

RQ-4. (Memory) What are the implications for memory reservation size for alternate           

methods of serverless application flow control? Specifically, how does pipeline          

runtime, latency, and data processing throughput vary when functions are

deployed with different memory sizes?

RQ-5. (Microservice Controller) What are the implications for performance and cost for           

alternate memory reservation sizes and controller programming languages for the          

microservice controller application flow control pattern?  

Qualitative questions include:

RQ-6. (Feature Comparison) From a development perspective, what unique capabilities

does each application flow control method provide? 

RQ-7. (Developer Effort) How does developer effort vary for alternate application flow           

control methods? Which provides the best developer experience? 

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 SERVERLESS FUNCTION DEVELOPMENT CHOICE IMPLICATIONS

This thesis complements the findings of a paper by the UW Tacoma Cloud and Distributed              

System Research group regarding the implications of programming language choice for           

serverless data processing pipelines [4]. In the paper, the researchers implemented a three step              

data processing pipeline in multiple languages to analyze the impact of language choice on the               



5

cost and performance of the pipeline. In this thesis, we examine alternate choices of flow control                

to orchestrate the steps of the same data processing pipeline. These efforts aim to demystify cost

and performance implications of alternative serverless application flow control methods

available to developers. 

2.2 CONCEPTUAL ISSUES WITH SERVERLESS FLOW CONTROL

Other researchers have analyzed outstanding conceptual problems in orchestrating         

serverless functions. In a 2017 paper, IBM researchers address a problem common to             

synchronous flow control methods, double billing [5]. This problem occurs any time a serverless              

function that is billed per unit time is used as a controller to compose a workflow of serverless                  

functions. This function must be active while waiting for each result from synchronous serverless

function calls. The user is billed for two functions at the same time. The user is charged for the                   

controller function that is idly waiting for results, and for the other function that accomplishes               

the work. While this paper introduced this problem, it did not quantify the cost implications with               

concrete data.  

2.3 COMPARISON OF FAAS ORCHESTRATION SYSTEMS 

López et al. examined different platform specific FaaS orchestration systems in a 2018             

paper [6]. The systems examined were AWS Step Functions, Azure Durable Functions, and IBM

Composer. This report focused on these three cloud provider orchestration tools and did not              

compare them to other flow control methods. The primary metric focused on by this report was                

the overhead associated with orchestrating a set of functions, which the researchers obtained by             

subtracting the sum of the runtime of those functions from the runtime of the sequential               

composition of those functions. The researchers varied both the number of functions in sequence,



6

and the number of parallel invocations of sequences of the same size. They found that “overhead                

grows linearly with the number of functions in the sequence“ but in contrast “overhead grows

exponentially with the number of parallel functions”. They concluded that AWS Step Functions

was the most mature and performant orchestration service. The offerings on other platforms were              

still in experimental phases when the paper was published and cost data for those platforms was               

not clear at that point making a direct cost comparison impossible. The experiments conducted in               

this report used a function that slept for one second and did not perform any work. By

conducting our flow control study using functions performing common data processing tasks

with various dataset sizes, we hope to gain insight into how alternate flow control methods can                

impact the performance of tasks with different runtimes. 

CHAPTER 3. SERVERLESS APPLICATION FLOW CONTROL 

3.1 OVERVIEW 

The flow of execution between serverless functions presents a unique set of challenges.             

Serverless functions should be treated as stateless since each invocation may be in a fresh               

environment. When possible, serverless platforms reuse function instances from previous          

invocations, this means that in some cases any data written to the environment from a previous                

invocation may be available, however if a long enough period has elapsed since the last

invocation of a function, or if all the previously initialized function instances are in use, a fresh                 

function instance will be initialized that persists no previous data. Because of this, any stateful               

data must be stored using an additional service.  

Methods of orchestrating the flow of functions can be classified as synchronous or            

asynchronous. Synchronous methods involve the caller maintaining a connection to the cloud

platform. This provides the advantage of having an immediate awareness of failure, but also              



7

requires that the client dedicate an idle thread to wait for work to be completed by the serverless                 

functions. Asynchronous methods make a call to initiate function execution without maintaining

an open connection. The client must either poll for the availability of the final result to then pull

it from the server, or subscribe to a notification service which will then push the result to the                  

client upon completion. Asynchronous function invocations free up computing resources by not            

dedicating resources that must wait while work is accomplished elsewhere. Developers must            

determine an appropriate polling interval that considers the round trip latency between the client

and the cloud. Approaches must strike a balance between retrieving results in a timely manner

and not wasting CPU cycles.  

3.2 BILLING

How serverless workflows are billed introduces additional considerations to account for           

in choosing the optimal method of flow control. The serverless functions accomplishing work are              

billed per GB/second, rounded to the nearest millisecond. This means that the cost of running               

functions will always scale with the amount of work. FaaS platforms allow developers to              

configure the amount of memory available to the function. The amount of memory allocated to

the function by the developer will affect the price per second, but in some cases improve the                 

runtime of the function. Many FaaS platforms such as AWS Lambda and Google Cloud              

Functions scale CPU resources with the function’s memory reservation size. This prompts users             

to allocate memory, not only for the memory required to run the function, but also to scale the                  

CPU capacity allocation of a function. Choosing the optimal memory setting for a function is

important because setting the memory too low can increase runtime to the point that it eclipses                

any cost savings, leading to lower performance and higher costs. On AWS Lambda, performance              

improvements also decline when reserving above 1536 MB, the point where the function             



8

sandbox receives a second virtual CPU core. If the function’s code is not multithreaded,              

allocating memory beyond this threshold leads to higher costs with minimal discernable

performance gains [4]. Flow control methods that require the FaaS functions themselves to

perform additional work will incur additional costs. All methods of flow control add additional              

costs for orchestrating transitions which we discuss in section 4.4.  

3.3 METRICS 

To analyze the performance of the various methods of flow control we collected a variety               

of metrics to characterize our experimental runs. We introduce these metrics before covering the              

flow control methods studied to help readers better understand how we expect these metrics to               

vary with the choice of flow control. We profiled the following primary metrics:

pipeline runtime: 

This metric is calculated by subtracting the startime of the first function in the pipeline from the                 

endtime of the last function to derive the pipeline’s elapsed time. This captures processing time               

of the worker functions as well as the time taken to transition between functions. 

client runtime:

This metric captures the client-to-server round trip time and is calculated by subtracting the              

client’s wall clock time before invoking the pipeline from the wall clock time when the client is                 

notified of pipeline completion. For the asynchronous flow control methods, this metric will             

include a variable amount of extra elapsed time because notification of pipeline completion is              

obtained through polling.

function runtime: 

This metric records only the time used by the worker functions and neglects the transition time. 



9

latency: 

This metric is obtained by subtracting the combined function runtimes for the worker functions

from the pipeline runtime to obtain just the transition time between functions.

billed amount: 

This metric is the estimated cost of hosting the data process pipeline. Billed amount is calculated                

by multiplying the function runtime in ms by the published Lambda billing rate per ms for each                

function, and then adding any additional transition costs specific to the method of flow control.

This includes costs associated with the use of other AWS services such as S3, and Step

Functions. 

throughput: 

Data processing throughput (row/sec) provides a metric for comparing the efficiency of data             

processing pipelines. Throughput describes the velocity that data is processed offering a key big

data metric to describe the flow rate of data processing for a given test. Visualizing a pipeline's

throughput when scaling the memory reservation size of the pipeline's functions can help to              

visualize flow rate of data processing. 



10

3.4 FLOW CONTROL METHODS

3.4.1 Client Flow Control 

 

Figure 1. Diagram of pipeline orchestration using Amazon EC2 as the client 

Client Flow Control refers to orchestrating the pipeline from a developer desktop or            

laptop, or a cloud-based virtual machine. All of our experiments involved triggering the pipeline              

from the same EC2 instance. Performance of this method is limited by the resources of the EC2                 

instance (e.g. vCPUs, memory). For client flow control, we included the cost of the EC2 instance

while calculating the total billed amount of the data processing pipeline using this flow control               

method. Including the cost of the EC2 instance means that the portion of the billed amount               

metric associated with transitions between functions will scale linearly with pipeline runtime.  



11

3.4.2 Step Functions 

Figure 2. Diagram of pipeline orchestration using AWS Step Functions 

Step functions is an AWS provided service for workflow orchestration. This service            

allows developers to define workflows in an easy to use GUI. For a simple pipeline without                

branches this was trivial to implement. The service also supports more advanced constructs like              

if statements enabling more complex workflows. Step functions handle passing data from each             

step (e.g. Lambda function) to the next. The service is billed per transition, not function runtime,

including the pipeline’s start and end, meaning a three step pipeline requires five transitions. One              

advantage with Step Functions is that the billed amount is unrelated to pipeline runtime              

enabling this method to have a constant transition cost based on the number of function               

transitions. 



12

3.4.3 Microservice Controller 

Figure 3. Diagram of pipeline orchestration using a microservice controller

The Microservice Controller flow control approach involves developing a separate          

Lambda function to orchestrate the pipeline. For this project we developed controllers in both              

Java and Python to compare cost and performance differences. This flow control method suffers

from the double billing problem, because cost is incurred for both the function accomplishing the

work and the controller [4]. For the controller microservice, the relatively simple task of              

orchestrating function calls can be accomplished with minimal memory. Consequently, we           

investigate the tradeoff between the memory reservation size for the Microservice Controller            

function vs. the ensuing performance of our data processing pipeline.



13

3.4.4 Event Based Triggers 

Figure 4. Diagram of pipeline orchestration using Event Based Triggers

AWS provides an option to trigger Lambda functions based on events occurring to

buckets and objects in S3. For this workflow, we upload report files to S3. AWS provides a

mechanism for defining triggers matching certain events that target other resources. To            

orchestrate our pipeline, we defined an event handler for S3 PutObject operations with a              

filename matching the function. The event handler calls the next function in the pipeline.              

Because the pipeline requires data from the previous function, this method required downloading

the report files (e.g. Lambda function response JSON objects) from S3, adding additional costs

by increasing the function runtime. This additional cost could be avoided through multiple            

workarounds. Static data could be hardcoded, or provided through Lambda environment           

variables. Dynamic data provides a more difficult problem because the only data provided to the               

function triggered by S3 is the file name, which is limited to 1024 characters. However this could

be used to transmit a limited amount of dynamic data if necessary. For our experiments we

accepted the additional overhead of downloading the report file as a penalty for this method of                



14

flow control. Additional costs for this method are S3 operations which are billed per operation.               

Because the size of the report files (e.g Lambda function. JSON response objects) do not scale

with the size of the dataset processed, and the S3 operations used stay constant with each

pipeline execution, the transition cost of this method is constant in relation to data size. 

It is worth noting that this method of flow control was the only one requiring code                

modifications and additional deployments for the worker functions. Because S3 triggers provide            

an S3Event argument instead of a standard HashMap, the code had to be refactored to accept that

input. This is undesirable from a microservice architecture standpoint because it limits the

reusability of the services by tying them to a particular method of flow control. Services defined                

to accept an S3Event as an argument are no longer useful for clients that may want to invoke                  

them through other means. 

CHAPTER 4. METHODOLOGY 

4.1 AWS LAMBDA 

AWS Lambda is a serverless compute service that lets developers run code without             

provisioning servers, creating scaling logic, or managing runtimes. With Lambda, developers can

run code with zero administration. Developers can upload code as a zip or JAR file, or even                 

write code in browser and Lambda will automatically allocate an execution environment on             

demand and run the code, for any scale of traffic [6]. 



15

4.2 TRANSFORM LOAD QUERY DATA PROCESSING PIPELINE 

In this case study, we examine the implications of using alternate methods of flow control               

to instrument a three step data processing pipeline implemented on the AWS platform. This              

pipeline was originally developed to study implications of programming language choice for            

serverless data processing [3]. The pipeline processes sample sales data that includes information

such as product order details, transaction pricing, and customer metadata. Each dataset is a CSV               

file stored in Amazon S3 ranging from 100 to 500,000 rows. The pipeline steps are described as                 

follows: 

1. Transform Function 

The transform function takes a CSV file stored in Amazon S3 and applies multiple

transformations to the data. This function removes duplicate rows, creates additional           

columns containing order processing time, and calculates the gross margin of each sales             

transaction. Once the transformations are applied the modified CSV file is saved to             

Amazon S3. 

2. Load Function

The load function pulls the transformed CSV file from S3 and loads it into an Amazon                

Aurora serverless MySQL database. The function creates SQL insert queries for each row             

in the CSV file. These queries are executed in batches of 1,000 to improve performance               

by reducing the number of distinct database transactions. 

3. Query Function

The final function queries the newly loaded database by performing five separate SQL             

aggregation queries where results are joined with a UNION . This function then saves the               

results of the queries to S3 for future access. After the queries are complete a stress test is                  



16

performed using a “ SELECT * ” query to retrieve every row from the database to                

measure the data transfer throughput (row/sec) between the database and the FaaS

function.

4.3 SAAF 

To help identify factors responsible for performance variation on FaaS platforms,           

researchers in the UW Tacoma Cloud and Distributed Systems research group have developed             

the Serverless Application Analytics Framework (SAAF) [8]. SAAF supports profiling          

performance, resource utilization, and infrastructure metrics for FaaS workloads deployed to

AWS Lambda written in Java, Go, Node.js, and Python. Programmers include the SAAF library              

and a few lines of code to enable SAAF profiling. SAAF collects metrics from the Linux /proc                 

filesystem (Linux procfs) appending them to the JSON payload returned by the function

instance. 

Attributes collected include Linux CPU Time Accounting metrics such as CPU idle, user,            

kernel, and I/O wait time. Other metrics include wall-clock runtime and several to characterize              

memory usage. To identify infrastructure state, SAAF stamps function instances with a unique             

ID and the existence of a stamp identifies if the environment is new (cold) or recycled (warm). A

function instance is stamped by writing a UUID file to /tmp. For this case study, we collected                 

data from each pipeline step by uploading results compiled by SAAF to Amazon S3 for later                

analysis. We augmented the data collected by SAAF with additional metrics collected on the              

client.  



17

4.4 EXPERIMENTS 

To analyze our various methods of flow control with respect to the metrics described in 

section 3.3 including function runtime, pipeline runtime, client runtime, latency, and billed 

amount, we conducted the following experiments. Dataset sizes refer to rows of CSV data. 

EX-1.  Overall Performance Comparison

In this experiment we performed 11 runs of the TLQ pipeline for each flow control               

method, for each of the dataset sizes: 100, 1,000, 5,000, 10,000, 50000, 100,000, and              

500,000.

EX-2. Cold Performance Comparison 

In this experiment, we performed 10 runs of the TLQ pipeline for each flow control

method using a 100,000 row dataset, with 45 minutes of sleep time between runs. To               

isolate the effect of cold starts to the Lambda functions and flow control methods, we               

configured our database to stay active for the duration of the experiment by disabling the               

“Pause compute capacity after consecutive minutes of inactivity” setting. 

EX-3. Lambda Functions Memory Size Comparison

In this experiment, we performed 11 runs of the TLQ pipeline for each flow control               

method using a 100,000 row dataset, for each of the following memory settings: 512,              

768, 1024, 1536, and 2048 MB.

EX-4. Microservice as a Controller Memory Size and Language Comparison 

In this experiment, we performed 11 runs of the TLQ pipeline for each of the two                

different implementations of a microservice controller: one in Java, and one in Python.             

We repeated the experiment using the 100,000 row data set for the following controller              



18

memory settings: 128, 192, 384, 512 MB. For the Java controller, 128 MB was an               

insufficient amount of memory to run the controller so this setting was skipped.

For the experiments comparing different flow control patterns (e.g. EX-1, EX-2, and            

EX-3), the microservice controller used was the Python implementation configured with 128 MB             

of memory. For every experiment except EX-3, we configured the worker functions with 2048              

MB of memory. For every experiment except EX-2, the initial run was discarded to ensure

“warm” infrastructure. SAAF’s newcontainer attribute was used to verify that all function

instances were warm for these experiments. In addition, when reporting metrics, we discarded             

any run for which pipeline runtime was more than two standard deviations from the mean.               

Resource contention on the public cloud can introduce a level of unpredictability to analyzing              

cloud computing performance so by removing outliers we hope to perform more meaningful

analysis.

The below table provides a price comparison for each flow control method. 

Table 1. Price comparison for alternate flow control methods 

Flow Control
Method 

Client
Orchestration 

Microservice
Controller 

State Machine Event Based
Triggers 

function 
runtime costs 

$0.0000166667 
for every
GB-second 

$0.0000166667 
for every
GB-second 

$0.0000166667 
for every
GB-second 

$0.0000166667 
for every
GB-second (has 
additional
function 
runtime for S3 
download) 

Transition cost Cost of EC2 
Instance 

Cost of running 
controller 

0.000125$ (5 
transitions at 
.000025$ per
transition) 

0.000012$ (2 
get requests + 
doesObjectExist
call) 



19

CHAPTER 5. RESULTS 

5.1 EX-1 Overall Performance Comparison 

The focus of this experiment was determining the overall cost and performance implications

of the choice of flow control. For this experiment we configured the T, L, and Q functions with                  

2048 MB of memory. Throughout this experiment, the event-based model of flow control            

suffered in performance, consistently producing the most latency as well as function runtime.             

The higher function runtime for the event-based flow control was due to the additional time               

spent downloading the previous function’s JSON output file to obtain data that was passed to the

functions in the other methods. However, because both the time spent downloading JSON output              

files and the latency stays constant as the data size increases, the relative difference decreases as                

data size increases. In essence this additional latency is amortized with increasing larger input              

data. For the 100 row data sample, using the event based system results in 384% slower                

performance when compared to the other asynchronous method of flow control, the

state-machine. However for the largest datasize, choosing the event based system comes at only              

a 2% performance penalty vs. the state-machine. Normalizing the results from the 100,000 row              

experiments for the microservice controller, state-machine, and VM-client based on the results            

from the event-based trigger method results in a 28.1%, 27.7%, and 25.6% faster performance              

for the microservice controller, state-machine, and VM-client respectively. This demonstrates

that the performance difference is relatively small between these three methods compared to the              

event-based method. 



20

 
Figure 5. Pipeline runtime comparison of alternate flow control methods 

It is clear that using event-based triggers comes at a performance penalty, however when

considering the price of each method, the event-based model is a competitive option.             

Event-based triggers are consistently the cheapest option for running this pipeline, although the             

difference between this method and the use of the state-machine becomes relatively small as             

dataset size increases and the runtime of the Lambda functions begins to overpower the price of                

function transitions. The cost of both of our synchronous methods increases quickly and

dramatically as the dataset size increases. This is to be expected as the transition cost will                

continue to scale as the data size increases, while our asynchronous methods have constant              

transition costs. For the largest data size, choosing the microservice controller pattern results in              

more than twice the billed amount of the event based system, meaning that a million invocations                

of the pipeline for the largest data size would cost ~$2,580 more using the microservice

controller. 



21

 
Figure 6. Billed amount for across dataset sizes for different flow control methods

Table 2. Cold start latency comparison

5.2 EX-2 Cold Performance Comparison 

This experiment revealed that the ratio of cold to warm start latency for the data               

processing pipeline was most impacted by the microservice controller flow control pattern, and             

least impacted for event-based triggers when comparing the data collected in this experiment to

the data using the same data size from EXP-1. For the microservice controller, cold latency will

include the cold start for the controller Lamba. This additional cold start time, combined with the                

best warm performance gave it a very high delta ratio. Event based triggers were least affected as                 

a ratio as the warm latency is already quite high for that method.  

Flow Control 
Cold Latency 

(ms) 
Warm 

Latency (ms) 

Cold-to-Warm 
Latency 

Increase (ms)
Cold-to-Warm 

Delta Ratio 

VM-client 2944 933 2011 3.16x 

state-machine 1977 292 1685 6.77x 

event-triggers 4910 2850 2060 1.72x 

microservice 1850 192 1658 9.64x 



22

5.3 EX-3 Lambda Functions Memory Size Comparison 

To examine how the different methods of flow control were affected by varying allocated              

memory for the worker functions, we examined how each flow control method’s pipeline

runtime varied as we increased the allocated memory for the worker functions. The T, L and Q                 

functions were run with 512, 768, 1024, 1536, and 2048 MB for this experiment using the                

100,000 row dataset. Comparing figure 7a to figure 5 from EXP-1 demonstrates that the             

performance improvement for the flow control method with the greatest pipeline runtime, event             

based triggers, was most noticeable, with choosing the lowest memory setting (512 MB)

resulting in over twice the pipeline runtime compared to the largest memory setting (2048 MB).               

We note that doubling the memory allocation did not halve the pipeline runtime for any flow                

control method. The event-based method experienced its biggest decrease in pipeline runtime            

between 1024 MB and 1536 MB, 23.1%. The other methods all experienced the biggest decrease               

from 512 MB to 1024 MB at 20.0%, 20.0%, and 17.7% for the microservice controller,

state-machine, and VM-client respectively. Event-based triggers only improved by 12.7% for           

this memory step. The plot line for event-based triggers is relatively linear between 512 MB and                

1536 MB meaning that additional memory continues to translate to better performance           

throughout this range. The plots for the other methods show a clear concavity over that period,                

meaning that as the available memory increased, the performance improvement for adding

memory decreased. For every flow control method, the graph flattens between 1536 and 2048              

MB, with the state-machine even experiencing a drop in performance. This may not be the case                

if our pipeline consisted of multithreaded functions because above 1536 MB, functions gain             

access to an additional CPU core, which the T, L, and Q functions do not utilize [3]. It is worth                    

mentioning here that the Lambda functions used for the pipeline with event-based trigger flow

control are different from those used by the other three methods, as they download the prior                



23

function’s JSON response object from S3. This could be the reason why this flow control method                

has higher relative improvements at higher memory settings than the other methods. Figure 7b

depicts pipeline data processing throughput relative to function memory reservation size.

Figure 7a. Pipeline runtime vs. memory reservation size 

 

Figure 7b. Pipeline data processing throughput vs. memory reservation size 



24

5.4 EX-4 Microservice Controller Memory Size and Language Comparison

To investigate how language choice and memory setting affected the microservice           

controller pattern, we experimented with various controller memory configurations using

controllers implemented in Java and Python, by processing a 100,000 row dataset. We evaluated              

the Python controller with 128, 192, 256, 384, and 512 MB of reserved memory. For the Java                 

controller, 128 MB of memory was not a sufficient amount of memory to run the controller so                 

we excluded this setting and evaluated the other 4 memory settings. The performance graph in              

Figure 8a depicts pipeline runtime across the different controller memory settings. The figure

shows consistent performance improvements for the Java controller. The Python controller, on           

the other hand, does not show a consistent relationship between memory allocation and             

performance, as the lowest memory setting provided the lowest pipeline runtime! It is important             

to note that the percentage performance difference is very small for both languages, with the               

difference between the fastest memory setting and the slowest being 3.2% for the Python

controller, and 2.4% for the Java controller. Comparing performance across languages at the 192              

MB setting shows a 3.2% improvement for the Java controller vs. Python. Referring back to              

figure 5 from EXP-1 shows why allocating additional memory to the controller only results in               

small performance improvements. For the 100,000 row dataset, the controller was shown to             

spend the majority of its active time idling because function runtime, the execution time of the

worker functions, clearly dominates pipeline runtime, while latency, the metric that is affected             

by better controller performance is only a small fraction. Figure 8b, which shows controller price              

vs. memory allocation, shows a linear relationship between price and memory allocation because             

the cost of allocating additional memory to the controller is not offset by a significant runtime                

improvement. Doubling memory led to about a doubling in price.



25

 

 

 

 

 

Figure 8. Comparison of pipeline runtime (left, a) and transition costs (right, b)  

for Java and Python microservice controller implementations 



26

CHAPTER 6. CONCLUSIONS 

In this case study we compared different methods for orchestrating a multi-function data             

processing pipeline implemented on AWS Lambda. We implemented four distinct flow control            

patterns and performed experiments to investigate how the choice of flow control pattern impacts              

the cost and performance of a data processing pipeline. Our experiments investigated            

implications for flow control using scenarios with different function configurations and

infrastructure state (i.e. cold vs. warm). 

6.1 FLOW CONTROL PERFORMANCE COMPARISON

We now summarize our research findings for each research question.  

RQ-1: Executing the Transform-Load-Query data processing pipeline using each flow          

control method for various data sizes allowed us to examine how latency, pipeline runtime, and               

billed amount varied depending on flow control method. We found that using event-based             

triggers came at a noticeable performance penalty vs. the other methods. This difference in

pipeline runtime using event-based triggers compared to the state-machine orchestrated pipeline           

was 384%, 28%, and 2% for the 100, 100,000 and 500,000 row datasets. The performance for                

the VM-client, microservice controller, and state-machine pipelines was relatively similar, with           

the difference in pipeline runtime for these methods being less than 3% for the 100,000 row                

dataset.

RQ-2: We found that the synchronous flow control methods we examined, the            

microservice controller, which suffers from the “double billing” problem, and the VM-client,            

both exhibited significantly higher costs compared to the asynchronous methods for all but the              

smallest dataset. This led to a cost increase of over 200% for the largest dataset. This equates to                  



27

a premium of ~$2,580 (137%) for using the microservice controller over the event-based            

method for one million pipeline executions using the 500,000 row dataset. This results

demonstrates how flow control approaches that require renting a programmable client incur

additional charges.  

RQ-3: Our cold start experiment revealed that the latency of the microservice controller             

was most affected by cold infrastructure, exhibiting 9.6x more latency when compared to             

running the pipeline using the same dataset and control pattern on warm infrastructure. Event

based triggers were least affected, experiencing only 1.7x times more latency for cold vs. warm

infrastructure. Latency increased 6.8x for the state-machine, and 3.2x for the VM-client            

respectively.  

RQ-4: When varying the memory allocated to the worker functions, the event-based            

triggers experienced the largest improvement in pipeline runtime at 43% when comparing

performance for the smallest memory allocation (512 MB) to the largest (2048 MB). Scaling the

allocated worker function memory from 512 MB to 1024 MB resulted in the largest pipeline               

runtime improvements for the microservice controller, state-machine, and VM-client, 26.5%,          

25.9%, and 23.7% respectively, while pipeline runtime only dropped 14.6% for event based             

triggers between those memory settings. Event based triggers experienced the largest

improvement from 1024 MB to 1536 MB, 21.7%. Overall, the event-based triggers pipeline

experienced more relative improvement at higher worker function memory settings than the            

other three pipelines. All flow control methods improved the least from 1536 MB to 2048 MB.  

RQ-5: Comparing the effects of implementation language and memory allocation on the            

performance and cost of the microservice controller pattern showed only minimal improvement

in performance when providing the controller with additional memory for the Java

implementation, 2.4%. The Python implementation showed no discernible relationship between          



28

memory allocation and performance with the lowest memory setting performing over 2% better             

than the highest memory setting. Because the controllers spent the majority of their active time

idling, allocating additional memory to the controller results in much higher costs, without

significant performance improvement. The Java controller configured at the highest memory           

setting we measured (512 MB) was the fastest, while the Python controller configured at 128 MB                

was the cheapest. 

6.2 FLOW CONTROL DEVELOPMENT PERSPECTIVES 

RQ-6: Considering the different capabilities of each flow control method is also            

important in choosing the right pattern for a given use case. Table 3 summarizes the difference in                 

capabilities.  Desired capabilities are highlighted in green.

Table 3. Comparison of capabilities of flow control methods  

Our findings from EX-1 show that both synchronous methods of flow control experience

much higher costs than the asynchronous methods and these costs continue to increase as the               

runtime of the worker functions increase. With this in consideration, synchronous methods offer             

multiple benefits. Much of the analysis reported in this thesis focuses on pipeline runtime,              

Flow Control 
Method 

Asynchronous Built-in 
payload 
passing

Requires
refactoring 

worker 
functions 

Requires 
additional

infrastructure 

Vendor 
lock-in 

Microservice 
Controller

No Yes No No Yes 

Event-based 
Triggers

Yes No Yes No Yes 

State-Machine No Yes No No Yes 

VM-Client Yes Yes No Yes No 



29

which records the time elapsed from the start of the first service to the completion of the last. For                   

synchronous methods this will be very close to client runtime, the time elapsed from when

execution is triggered by the client, to the time when the client is notified that the pipeline has

completed. Only a small amount of additional latency will be added for the trip to the server and                  

back. For our asynchronous methods, the pipeline runtime and client runtime can be quite              

different as the results must be retrieved through polling which results in additional latency due              

the gap between pipeline completion and when the user next polls to retrieve the results.

For workflows that require dynamic data to be passed between services, implementing

the event based triggers approach is the only method that requires refactoring the original              

pipeline’s function source code. While this is by no means an insurmountable problem, it              

requires extra effort to implement this method of flow control. Additionally these source code              

changes that make specific changes to satisfy the event based trigger flow control approach

reduce the immediate reusability of the functions source code which is undesirable from a

software engineering perspective.  

The VM-client method was the only method that required persistent infrastructure to be             

deployed. When calculating costs for this method, we calculated the cost of the VM based on                

client runtime, however, this is a simplification that assumes an active EC2 instance is already

available. Having this EC2 instance idling clearly does not match the goals of serverless

computing. It is possible to script the deployment of the client instance to minimize charges to                

only when the pipeline is called as AWS allows EC2 instances to be paused and restarted with                 

only minimal charges for storage of the disk image, however this approach incurs additional              

latency for starting the EC2 instance.

The VM-client is the only method that is not completely tied to AWS. Although even

with this method some refactoring would be required to migrate to another cloud provider in our                



30

case because we were directly using the AWS CLI (Command Line Interface). A developer              

desiring a truly platform agnostic method of flow control could provide worker functions that are

invoked through HTTP endpoints and trigger these functions using the cURL HTTP shell client.

RQ-7: Developer effort is a hard metric to quantify, but an important one as labor costs                

are a major factor for technology companies. We can address this subject from the perspective of                

initial development as well as maintenance and change tolerance. For a simple sequential

workflow with no branches like the one studied here, AWS Step Functions provided the simplest

initial development experience, providing an in browser GUI where the developer can define the              

workflow using familiar JSON. The VM-client and both versions of the microservice controller,             

Java and Python, required handling the dependencies needed to invoke the functions and process              

the JSON payloads. The Java controller presented the most difficulty here as it required the

Maven build system to supply the necessary dependencies. For the Python controller, AWS

Lambda provides an easy to use browser-based Python editor, and the environment that runs the               

code comes pre-loaded with all the necessary dependencies. The VM-client required installing            

the AWS CLI, as well as the jq JSON parser. The Python controller has the clear advantage                 

between the synchronous flow control methods, both for initial development and maintenance,

since updating the dependencies will be handled by the cloud provider instead of the developer.

Using S3 triggers for flow control is clearly the loser from a development perspective because of                

the requirement of modifying the worker functions. Not only does this require additional upfront              

development, but it limits the reuse of the functions through other invocation methods, and              

requires additional coding to modify the flow control method later on.



31

6.3 OUTCOMES 

This thesis provides a comparison of different methods of flow control for serverless             

applications that can help to demystify the tradeoffs that developers face when considering             

different serverless designs. Each of the four methods examined presented their own advantages             

and disadvantages. We found that choosing a synchronous method of flow control resulted in

additional costs, while choosing an event-based system required refactoring worker functions           

and resulted in a performance penalty. For our use-case, the AWS version of the state-machine               

pattern, Step Functions, provided the best developer experience while also providing the best             

balance of performance and cost. 



32

BIBLIOGRAPHY

[1] Wang, L., Li, M., Zhang, Y., Ristenpart, T. and Swift, M., 2018. Peeking behind the curtains of                 
serverless platforms. In Proc. of the 2018 USENIX Annual Technical Conference (ATC '18) , pp.              
133-146.

[2] J. Su, “Amazon Owns Nearly Half Of The Public-Cloud Infrastructure Market Worth Over $32              
Billion: Report,” Forbes, 02-Aug-2019. [Online]. Available:
https://www.forbes.com/sites/jeanbaptiste 
/2019/08/02/amazon-owns-nearly-half-of-the-public-cloud-infrastructure-market-worth-over-32-billio
n-report/?sh=1c2568c729e0. [Accessed: 13-Dec-2020].

[3] Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uță, A. and Iosup, A., Serverless is more: From                  
PaaS to Present Cloud Computing. IEEE Internet Computing , Sept. 2018, 22(5), pp.8-17. 

[4] Cordingly, R., Yu, H., Hoang, V., Perez, D., Foster, D., Sadeghi, Z., Hatchett, R. and Lloyd, W.J.,
Implications of Programming Language Selection for Serverless Data Processing Pipelines. In Proc.            
of the 6th IEEE Intl Conf on Cloud and Big Data Computing (CBDCom 2020) , August 2020, pp.                 
704-711.

[5] Baldini, I., Cheng, P., Fink, S.J., Mitchell, N., Muthusamy, V., Rabbah, R., Suter, P. and Tardieu, O.,                 
The serverless trilemma: Function composition for serverless computing. In Proceedings of the ACM             
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming           
and Software (Onward! 2017), Oct 2017, pp. 89-103.

[6] López, P.G., Sánchez-Artigas, M., París, G., Pons, D.B., Ollobarren, Á.R. and Pinto, D.A.,            
Comparison of FaaS Orchestration Systems. In 11th IEEE/ACM International Conference on Utility
and Cloud Computing Workshops: 4th Workshop on Serverless Computing (WoSC '18) , December            
2018, pp. 148-153. 

[7] “AWS Lambda,” AWS, [Online]. Available: https://aws.amazon.com/lambda/. [Accessed:       
13-Dec-2020].

[8] “SAAF: Serverless Application Analytics Framework.” UW Tacoma Cloud and Distributed Systems           
Research Group, https://github.com/wlloyduw/SAAF.


