
Peak Volume Prediction via Time Series

Decomposition

by

Tucker Reed Stewart

Supervised by Juhua Hu

A senior thesis submitted in partial fulfillment of the departmental honors requirements

for the degree of

Bachelor of Science

Computer Science & Systems

University of Washington Tacoma

June 2020

Presentation of work given on ________________________

The student has satisfactorily completed the Senior Thesis, presentation, and senior elective

course requirements for CSS Departmental Honors.

Faculty advisor: ___________________________________ Date_______________________

CSS Program Chair: ________________________________ Date_______________________

June 12, 2020

Peak Volume Prediction via Time Series Decomposition

Tucker Stewart (trstew@uw.edu)
Supervised by Dr. Juhua Hu, Dr. Anderson Nascimento, and Bin Yu (Infoblox)

Abstract—For network administration and maintenance, it is
critical to anticipate when networks will receive peak volumes
of traffic so that adequate resources can be allocated to service
requests made to servers. In the event that sufficient resources
are not allocated to servers, they can become prone to failure
and security breaches. However, popular forecasting models such
as Autoregressive Integrated Moving Average (ARMIA) and
Recurrent Neural Networks (RNN) forecast time series data
generally, thus lack in predicting peak volumes in the series.
In this thesis, we aim to study how time series decomposition
can be used to improve prediction when peak volumes occur
in time series. More than often, time series are a combination
of different features, which may include but are not limited
to 1) Trend, the general movement of the traffic volume, 2)
Seasonality, the patterns repeated over some time periods (e.g.
daily and monthly), and 3) Noise, the random changes in the data.
Considering that the fluctuation of seasonality can be harmful for
trend prediction, we propose applying the Fourier Transform to
extract seasonalities and study how forecasting these components
independently can be used to improve both the general time series
forecasting and the peak volume prediction.

Index Terms—Network Traffic, Peak Volume Prediction, Time
Series Decomposition, Fourier Transform

I. INTRODUCTION

Many of previous works done for time series forecasting
have focused on general trend prediction [1–4]. While these
kind of forecasting models have been sufficient for most
problems where entities are forecasting a target variable for
any desirable point in time generally, these models lack in
forecasting peak values in the data and often under predict
these values. For some entities, this task is of even greater
significance; namely network administrators of Domain Name
System (DNS) and Dynamic Hosting Configuration Protocol
(DHCP) servers.

For network administration and maintenance, it is critical
to anticipate when networks will receive peak volumes of
traffic so that adequate resources can be allocated to service
requests made to servers. Networks receive spikes in traffic for
a number of reasons that are difficult to anticipate. Demand
from customers for access to these servers and networks
can see a rapid rise thus traffic on the network increases.
However, requests made to these servers can also be malicious
in nature as these peaks in traffic volume can also be the
consequences of malicious actors. One such way is a DNS
Denial of Service (DDoS) attack. This is where a malicious
actor hijacks the machines of benign users to create a bot
net that then generates DNS queries towards the victim DNS
server to overload it [5–7]. Despite the reason that network
traffic receives these sudden increases in flow, the risks in
not allocating enough resources to service these requests are
the same. When resources are not sufficiently allocated to

networks, they become prone to failure, render the server
unresponsive to customers, and create a potential for security
breaches. For this reason, the consequences of under predicting
these peak values are much greater than over predicting.

However, popular forecasting models such as Autoregres-
sive Integrated Moving Average (ARIMA) and Recurrent
Neural Networks (RNN) have been focused on forecasting
time series data generally, thus lack in predicting peak volumes
in the series [1–4, 8–10]. ARIMA is a statistical model that
forecasts values as a linear combination of previously observed
values. Among many of ARIMA’s strengths, it is great for
modelling the trend and seasonality of a time series [11–
13] but lacks in forecasting the extrema within the data.
This is due to network traffic being non-linear and peak
values are stochastic events that are not captured in the key
systematic components of the data [8]. Perhaps by isolating
each component of the time series, such as the seasonality, we
can get better performance towards peak prediction.

Therefore in this thesis, we aim to study how time series
decomposition can be used to improve prediction when peak
volumes occur in time series. More than often, time series
are a combination of different features, which may include
but are not limited to 1) Trend, the general movement of
the traffic volume, 2) Seasonality, the patterns repeated over
some time periods (e.g. daily and monthly), and 3) Noise,
the random changes in the data [14]. Considering that the
fluctuation of seasonality can be harmful for trend prediction,
we propose to extract seasonalities and study how forecasting
these components independently can be used to improve both
the general time series forecasting and the peak volume
prediction.

To test the efficacy of time series decomposition for general
and peak prediction, we propose a framework that uses signal
transformation techniques to decompose the time series. Here,
the Fourier transform is used to extract sinusoidal seasonal
components from the trend and noise components. Then the
trend plus noise component of the network traffic data are
handled together and a model, such as ARIMA or Neural Net-
works, can be fitted to the data to forecast future observations.
We applied this decomposition framework to a Unresolved
DNS Queries data set provided by Infoblox, our synthetic
data set idealized for the Fourier Transform, and electricity
consumption as another real data set to test our methodology.
This empirical study demonstrates an increase in performance
for peak prediction using Fourier Decomposition.

II. RELATED WORK

A. General Forecasting Models

Most of the work done for modelling the flow of traffic
interacting with a network has been focused on general trend
prediction, that is, minimizing the error for all values rather
than just peak values. Popular models that have been success-
ful in modelling time series can be divided into two categories:
linear statistical models and non-linear models.

Many entities have had success in applying linear models
such as ARIMA, Seasonal ARIMA (SARIMA), and other auto
regressive models [1, 4, 9]. These models were one of the
first to become popular because they are relatively easy statis-
tical approaches to implement. Compared to other modelling
techniques, they are relatively simple in their architecture and
requires less data to train. While linear models have been
successful in modelling network traffic effectively, due to their
auto regressive nature in forecasting future observations as
a linear combination of previous observations, they fail to
represent the stochastic and non-linear dynamics of network
traffic, namely the peak volumes of queries [9]. For this reason,
auto regressive models and other linear models are insufficient
in capturing peak information.

To address the non-linear nature of network traffic, Neural
Networks (NN) have been used as a suitable alternative to
forecasting network traffic. In studies comparing ARIMA and
variants of NN, NN has been showing either marginal or
considerable improvement to ARIMA for forecasting network
traffic. There are, however, several different types of NNs that
have been implemented in forecasting network traffic. The
majority of architectures that have been applied to network
traffic can be divided into two main families; Feed Forward
Neural Networks containing ANNs and Convolutional Neural
Networks (CNN) [3], and Recurrent Neural Networks such as
Long-Short Term Memory (LSTM) and Gated Recurrent Units
(GRU) [8].

In a study comparing the performance of ARIMA and ANN
on WiMAX wireless network traffic, Stolojescu found that
ANN was able to achieve better performance for forecasting
small future time intervals compared to ARIMA [2].

RNNs may be preferable due to their ability to memorize
information about previously observed data. This is important
for time series forecast due to their temporal aspect and each
observation is dependent on previous observations. This has
made RNN a prime candidate for forecasting network traffic.
Fu et al. [8] was able to achieve slight decreases in the MSE
and Mean Absolute Error (MAE) using LSTM and GRU over
ARIMA . RNNs were not used in this empirical study as
they demand vast quantities of data to be effective that not
all data sets, namely the Unresolved DNS Queries data set,
could provide.

B. Time Series Decomposition

Time Series Decomposition bases itself on the concept that
time series are comprised of several different components
either additively or multiplicatively. The most prominently

identified components in time series decomposition include,
but are not limited to, the Trend, Seasonality, and the Residual.
The Trend is the general movement the series follows. Over
time, does the data tend to increase or decrease overall and at
what rate? Next the data can have multiple seasonal compo-
nents which are the patterns that repeat for some time interval;
namely daily, weekly, monthly, annually, or following with the
seasons. Lastly, there is the residual, also known as the noise or
error within the data. These are the random changes that cause
the data to deviate from the usual patterns. Decomposition
is the process in which we separate the time series into
smaller components that contribute to the overall result [14].
The motivation behind doing so is that by decomposing the
series into individual pieces they can then be isolated and
have a model fit to identify that particular pattern to improve
performance of the overall forecasting model [4].

One method for decomposing a time series is to apply
signal processing transformations to the series to transform
the series into another base. Then, the information presented
in the new base can be used to extract the components from
the original series. Fourier Transform is one of these methods.
Concretely, Fourier Transform can be used to transform a
series from the time domain to the frequency domain. The
series is then represented as the sum of sinusoids (i.e., sine and
cosine waves). This is particularly useful for identifying and
extracting seasonal components from the times series. Lewis
et al. [15] found that they were able to accurately forecast
the volume of call received by a call centre by applying the
Fourier Transform and forecasting in the frequency domain
rather than the time domain. However, not much work has
been done to apply the Fourier Transform on network traffic.

III. THE PROPOSED METHOD

Given a univariate time series of the form

X = {· · · , xt−1, xt, xt+1, · · · }

where xt is the quantity of the measured variable (e.g., the
traffic volume) at time t. The process of forecasting the traffic
volume of a network at time t+1 will receive can be denoted
as

xt+1 = F (xt, xt−1, · · · , xt−w+1) (1)

where F is a general time-series forecasting algorithm and w
is the window size that is the number of past observations
used for forecasting.

Instead of learning F directly from the observed time series,
We apply the Fast Fourier Transform [16] to transform X from
the time domain into the frequency domain. In the frequency
domain, the time series is represented as the sum of complex
sinusoids, sine and cosine waves, which are good candidates
for the seasonal components of the data. Thereafter, the
seasonal components than may be harmful for peak prediction,
can be separated from the original time series X .

For the remaining components (i.e., trend + noise) of X
denoted as

X ′ = {· · · , x′t−1, x′t, x′t+1, · · · }

we aim to learn the prediction function as

x′t+1 = F (x′t, x
′
t−1, · · · , x′t−w+1) (2)

Before fitting the model, we prepare the data X ′ by scaling and
normalization. Inspired by a previous work [10], we also apply
the local normalization to better capture the peak information.
However, before the local normalization can be applied, the
time series X ′ needs to be scaled to [1, 2] using Eqn. 3.

st =
x′t −X ′min

X ′max −X ′min

+ 1 (3)

This scaling step is important considering the special prop-
erty of local normalization in Eqn. 4. Specifically, we need
to ensure that the data does not have any values between
[0, 1) since local normalization divides the current observation
by its previous observation and values in [0, 1) can greatly
distort the scale. While local normalization tends to perform
greater in terms of peak prediction, it can also suppress
seasonality that exists within the time series. Fortunately, the
seasonal components have been removed and will be forecast
independently in our proposal.

For local normalization, each data point is normalized by
the previously observed value, such that the normalized times
series,

L = {· · · , lt−1, lt, lt+1, · · · }

is calculated by
lt =

st − st−1
st−1

(4)

Finally, the data L is scaled into the range of [-1, 1] using
Eqn. 5 to ensure that the scale of the values does not affect
the model estimation.

yt =
lt

|Lmax|
(5)

In summary, to forecast the future volumes of x′t+1 in
Eqn. 2, we will learn a prediction model as

yt+1 = F (yt, yt−1, · · · , yt−w+1) (6)

Then, yt+1 will be de-normalized to forecast x′t+1.
In the following subsection, we illustrate the main procedure

of the proposed method using the synthetic data.

A. Peak Prediction via Fourier Decomposition (PPFD)

The Fast Fourier Transform is an algorithm that transforms
a signal, a time series in our setting, from the time domain into
the frequency domain, i.e. frequency spectrum. The frequency
domain of a time series represents the set of sinusoids who sum
to the original time series in the time domain. These sinusoids
are good candidates for the seasonal components for a time
series. However, it is only the high amplitude sinusoids that
are likely candidates for being seasonal components as low
amplitude, high frequency components are likely noisy data.

Therefore, we propose to extract only the first c highest
amplitude sinusoids excluding the zero frequency sinusoid.
These sinusoids with a given frequency, amplitude, and phase,
can easily be calculated as cosines for the desired time interval

to forecast. Then, the remaining components, the Trend and
Noise of the time series, can be transformed back into the time
domain and forecast using another forecasting model F such
as ARIMA. Our proposed peak prediction procedures through
Fourier decomposition are as follows.

1) Apply the Fast Fourier Transform (FFT) on the time
series X to get the frequency spectrum as in Fig. 1.
It should be noted that the zero frequency component
is not a seasonal component and the seasonailities can
be emphasized by removing the zero component as in
Fig. 2. The synthetic data was generated by adding
three seasonal components (more details can be found
in Section IV) and the three seasonal components can be
easily observed in Fig. 2.

Fig. 1: Frequency domain of the synthetic data

Fig. 2: Frequency domain, with the zero frequency component
removed, of the synthetic data.

2) Filter out the first c highest amplitude components by
setting them to zero as done in Fig. 3 and store them.

Fig. 3: Frequency domain of the synthetic data with the three
highest amplitude sinusoids removed

3) Forecast each of the individual seasonal components that
were extracted from the frequency spectrum.

a) For each of the seasonal components, compute the
amplitude from the complex numbers of the frequency
spectrum and the phase shift.

b) With the amplitude, frequency, and phase shift, extrap-
olate each seasonal component as a cosine wave over
the forecasting time interval as in Fig. 4.

c) Sum the seasonal components together to get the
combined seasonality as in Fig. 5.

Fig. 4: The three sinusoids extracted from the synthetic data
set calculated as cosine waves.

Fig. 5: Sum of the three extracted sinusoids from the synthetic
data

4) Run inverse FFT on the filtered frequency spectrum to
get the time series X ′ with the seasonal components
removed.

5) Scale the filtered time series to range of [1, 2] with Eqn. 3,
apply local normalization with Eqn. 4, and then scale the
time series again to [-1, 1] using Eqn. 5.

6) Fit a forecasting model F on Y as in Eqn. 6 and use F
to forecast the remaining components.

7) Add the predicted seasonal components from Step 3 and
the remaining components from Step 6 together to get
the total forecast.

IV. EXPERIMENT

To demonstrate the effectiveness of our proposed forecasting
method, we evaluate it on both synthetic and real data sets.
Each of these data sets is a univariate time series aggregated
at different time intervals. The statistics of each data set are
summarized in Table I.

A. Setup

As a baseline for the results of our proposed methodology,
we apply ARIMA, ANN, and Fourier Forecasting indepen-
dently from ARIMA and ANN.

1) ANN
2) ARIMA with the optimal parameters selected.
3) Fourier Forecasting where all sinusoids are forecasted and

summed together.
In comparison to these baseline models, we will see the

effectiveness our proposed framework through the following
experiments.

1) PPFD using ANN to forecast the non-seasonal compo-
nents.

2) PPFD using ARIMA to forecast the non-seasonal com-
ponents.

For all of these experiments, only two general time-series
forecasting models are used, that is, ANN and ARIMA. These
models are setup for each experiment as follows.

1) ANN: The architecture of the model consists of a single
input layer, one hidden layer made up of five sigmoid
units, and an output layer with a single linear unit. The
size of the input layer will vary depending on what kind
of seasonality we expect the data to exhibit. For the
Unresolved DNS queries and our synthetic data set, the
input layer will have seven units to capture the weekly
seasonality.

2) ARIMA: ARIMA requires the parameters (P, D, Q). All
data sets required one level of differencing so D is always
set to 1. The number of parameters, P and Q, vary for
the data set so the best parameters are selected for each
data set.

B. Evaluation Metrics

RMSE is the standard evaluation metric for regression
problems such as time series forecasting. While this evaluation
metric is sufficient for general prediction performance, it
weights under prediction equally to over prediction and thus
is not well suited for peak prediction. Concretely, the Mean
Squared Error calculated the mean of squared errors as

MSE =
1

N

N∑
i=1

(x̂i − xi)2 (7)

where xi is observed value and x̂i is the forecasted value
provided by the model.

Bin et al. [10] proposed a new cost-adaptive loss function
that weights under prediction greater than over prediction
called the Weighted Sign Error (WSE). Then, to penalize
under prediction more heavily than over prediction, the loss
function is adapted to consider the sign of the error for each
observation, resulting in the following function as

WSE =
1

N

N∑
i=1

α
1+sign(x̂i−xi)

2 (x̂i − xi)2 (8)

α ∈ [0, 1] is a weighted coefficient that determines the weight
of over prediction. For our experiments, α is set to 0.2, and
sign() is a function that returns a numerical value based on
the sign of the error. Therefore, sign(x̂i − xi) returns 1 if
x̂i ≥ xi and −1 otherwise.

To evaluate the performance of each model, we use Root
Mean Squared Error (RMSE) and Root Weighted Sign Error
(RWSE) defined as follows.

RMSE =
√
MSE (9)

RWSE =
√
WSE (10)

We apply both of these evaluation methods on the entire
validation set to evaluate both the general prediction and peak
prediction as in [10]. In addition to these evaluation metrics,
we use a statistical method to identify the peaks in the time
series (i.e., Find Peaks function in Scipy’s Signal module) and
track the number of values in the validation data set that are
under predicted and over predicted, whose RMSE and RWSE
are also separately calculated to better capture the performance
on peak predictions.

Data Set Data Points Mean Min Median Max
Synthetic 7500 1375816074.4 824704284.8 1375148204.1 1944188859.3
Unresolved DNS Queries 968 105400760.9 46 98374184 294870823
Unresolved DNS Queries (Linear Interpolation) 1040 100498446.9 46 94268425 294870823
Electricity Consumption 32588 1.07789 0.0 0.78252 6.56053
Electricity Consumption (Linear Interpolation) 32164 1.09039 0.0296 0.79092 6.56053

TABLE I: Statistics of the Data Sets

Fig. 6: Synthetic Data Set Aggregated Daily. (Last fold from the cross validation)

Model c RMSE RWSE Peak RMSE Peak RWSE Under Predicted Over Predicted
Baseline Models

ANN 0.02442 0.01908 0.01007 0.00994 630 261
ARIMA 0.02395 0.01874 0.00913 0.00913 883 8

FOURIER 0.03366 0.02597 0.01276 0.01220 723 168
Fourier Decomposition

PPFD with ANN
1 0.02242 0.01755 0.00958 0.00944 639 252
2 0.02226 0.01741 0.00921 0.00853 561 330
3 0.02397 0.01877 0.00873 0.00659 447 444

PPFD with ARIMA
1 0.02961 0.02091 0.01805 0.01314 782 109
2 0.02873 0.01975 0.01937 0.01266 654 237
3 0.02992 0.02014 0.01940 0.01513 449 442

TABLE II: Performance Comparison on Synthetic Data

To test the efficacy of each model, we need to use some form
of cross validation. Since time series data are ordered and there
is essential information in the time lags between data points,
shuffling the data for k-fold cross validation is not desirable.
We used time series cross validation, also known as forward
chaining cross validation [17]. The number of rounds used in
our experiments is five. All evaluation values are aggregated
across all five folds and the average of each error, across the
five folds is recorded.

V. DATA DESCRIPTION AND RESULTS

A. Synthetic Data Set

We generated a synthetic data set free of noise, to test
our proposed PPFD framework on data that has very clear
sinusoidal seasonal components. This data is generated by
calculating a linear trend and adding sine waves of a given
amplitude and periodicity. To match with the Unresolved DNS
query data set, this data set is sampled daily. The trend is
calculated by the function yt = m ∗ xt + b where the slope,
m, is 100,000 and the y-intercept, b, is 1,000,000,000. Then
for the seasonality, we added three seasonal components.
Since the Fourier Transform represents the frequencies as

complex sinusoids, we generated the seasonal components as
sine waves for the periods of weekly, monthly, and yearly and
with amplitudes of 80,000,000, 72,000,000, and 56,000,000
respectively. These components are then added together to get
the resulting synthetic data set depicted in Fig. 6.

Table II shows the prediction results of different methods,
where c indicates the number of highest seasonal components
extracted. for the baseline FOURIER model, all the sinusoids
are forecasted giving us a c of dN2 e, where N is the number
of observations in the time series. First, it can be easily ob-
served that PPFD with ANN can not only improve forecasting
performance of the peak volumes but also that of the general
prediction, which demonstrates that seasonal fluctuations can
be harmful not just for the peak predictions but also for
the general predictions. Second, with the help of Fourier
decomposition that the exact number (i.e., c = 3) of seasonal
components are extracted, the performance on peaks only (i.e.,
Peak RMSE, Peak RWSE) is significantly improved and the
number of under predicted peaks is significantly decreased.
This can also be observed in Fig. 7, where one example
in red rectangular of peak volume that is under predicted
by the baseline of ANN, is well predicted by PPFD with

Fig. 7: Expected vs Forecasted: ANN (Top) vs. PPFD with ANN (c = 3) (Bottom) on Synthetic Data.

Fig. 8: Daily Unresolved DNS Queries after applying Linear Interpolation

ANN. Therefore, for time series with clear seasonality and
no noise, forecasting seasons and trend separately can help in
both general prediction and peak prediction.

B. Unresolved DNS Query Traffic

The DNS traffic data is aggregated daily over three years.
The DNS traffic does not exhibit any obvious seasonal com-
ponents and represent a wide range of values. In one day,
a network could receive as few as 46 DNS queries to as
many as almost three-hundred million. Hence, allocating a
static amount of network resources that is sufficient to service
the maximum observed number of unresolved DNS queries
is wasteful. This is why, it is essential to predict these peak
volumes and then allocate a sufficient number of resources

only when it is necessary. Linear Interpolation is applied to
fill in any gaps within the data set as described in Table I and
in Fig. 8.

Even though the Unresolved DNS queries data does not
exhibit any obvious seasonal patterns with the data, PPFD
did improve the performance for peak values and in some
circumstances all values as demonstrated by the results in
Table III. Looking at Fig. 9, there are three prominent peaks,
encapsulated by the red boxes, in the DNS query data set
that are now being over predicted or predicted closer to the
expected series rather than under predicted by the baseline.
Due to the non-obvious seasonal patterns, PPFD with larger
values of c generally increases the number of peaks that can be
over predicted rather than under predicted. This demonstrates

Model c RMSE RWSE Peak RMSE Peak RWSE Under Predicted Over Predicted
Baseline Models

ANN 0.17796 0.13408 0.23630 0.23602 105 5
ARIMA 0.18932 0.13761 0.23634 0.23588 101 9

FOURIER 0.18923 0.13790 0.23430 0.23422 105 5
Fourier Decomposition

PPFD with ANN

3 0.18004 0.13416 0.23481 0.23429 105 5
5 0.17896 0.13463 0.23344 0.23330 102 8
7 0.17649 0.13433 0.23385 0.23376 100 10
10 0.18272 0.13757 0.24157 0.24150 105 5

PPFD with ARIMA

3 0.19745 0.13973 0.23294 0.23160 96 14
5 0.19616 0.13978 0.23360 0.23238 97 13
7 0.19636 0.14014 0.23353 0.23218 96 14
10 0.19593 0.13999 0.23176 0.23080 96 14

TABLE III: Performance Comparison on Unresolved DNS Queries with Linear Interpolation

Fig. 9: Expected vs Forecasted: ANN (Top) vs. PPFD with ANN (c = 7) (Bottom) on Unresolved DNS Queries. (The time
lag of one day was reduced for the sake of this visualization only.)

that the proposed PPFD is able to help predict both peak
volumes and general volumes in real tasks, even when the
seasonality of the data is not that obvious.

C. Electricity Consumption

Lastly, we include an experiment on a real data with
more obvious seasonality to test the efficacy of the proposed
framework, which is the electricity consumption aggregated
hourly. This data set contains large segments of missing data
points that are set to 0. There is a gap of 119 continuous
missing data points starting on the August 17th, 2010 at 10pm
with another gap of 87 data points after that. Therefore, all
data after August 17th, 2010 at 10pm is thus removed and then
Linear Interpolation is applied as shown in Table I and Fig. 10.

Table IV provides similar findings, which further demonstrates
that our proposed method, PPFD, is beneficial for both peak
prediction and general prediction.

VI. CONCLUSION

For entities such as Infoblox, that provide services such
as DNS, DHCP, IP address management; it is crucial to
anticipate when these services will receive their peak volumes
of requests. In this work, we have found that time series
decomposition, particularly Fourier Forecasting, has improved
the performance of the models that have been applied to
network traffic in forecasting the peak values and in some cir-
cumstances improved the performance for general prediction
of all values.

Fig. 10: Hourly electricity consumption data after applying Linear Interpolation

Model c RMSE RWSE Peak RMSE Peak RWSE Under Predicted Over Predicted
Baseline Models

ANN 0.61432 0.48528 0.88223 0.88217 3599 120
ARIMA 0.66396 0.49462 0.86497 0.86390 3508 211

FOURIER 0.62570 0.48862 0.88123 0.88113 3556 163
Fourier Decomposition

PPFD with ANN

3 0.61333 0.48338 0.87782 0.87776 3523 196
5 0.61652 0.48544 0.87876 0.87868 3510 209
7 0.61495 0.48621 0.88115 0.88104 3496 223
10 0.61846 0.48619 0.87673 0.87662 3503 216

PPFD with ARIMA

3 0.65982 0.49305 0.86716 0.86639 3480 239
5 0.66156 0.49391 0.86633 0.86543 3481 238
7 0.66307 0.49481 0.86484 0.86377 3457 262
10 0.66459 0.49573 0.86622 0.86511 3457 262

TABLE IV: Performance Comparison on Electricity Consumption Data with Linear Interpolation

In future work, we want to study the effects that missing
data has on Fourier Forecasting to assess the robustness
of this procedure against missing data. In addition to this
investigation, we want to add to this work by testing the effects
of our proposed framework on more complex Neural Networks
such as CNN, LSTM, GRU.

REFERENCES

[1] P. K. Hoong, I. K. T. Tan, and C. Y. Keong, “Bittorrent network traffic
forecasting with arma,” International Journal of Computer Networks &
Communications (IJCNC), vol. 4, no. 4, pp. 143–156, Jul 2012.

[2] C. Stolojescu-Crisan, “Data mining based wireless network traffic fore-
casting,” in 10th International Symposium on Electronics and Telecom-
munications, Nov 2012, pp. 115–118.

[3] A. Mozo, B. Ordozgoiti, and S. Gómez-Canaval, “Forecasting short-term
data center network traffic load with convolutional neural networks,”
PLoS ONE, vol. 13, no. 2, p. e0191939, Feb 2018.

[4] Purnawansyah, Haviluddin, R. Alfred, and A. F. O. Gaffar, “Network
traffic time series performance analysis using statistical methods,”
Knowledge Engineering and Data Science (KEDS), vol. 1, no. 1, pp.
1–7, Jan 2018.

[5] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis, and
S. Gritzalis, “Dns amplification attack revisited,” Computers & Security,
vol. 39, p. 475(11), 2013.

[6] Z. Nafarieh, E. Mahdipur, and H. H. H. S. Javadi, “Detecting active
bot networks based on dns traffic analysis,” Journal of Advances in
Computer Engineering and Technology, vol. 5, no. 3, pp. 129–142, 2019.

[7] D.-T. Truong and G. Cheng, “Detecting domain-flux botnet based on
dns traffic features in managed network,” Security and Communication
Networks, vol. 9, no. 14, pp. 2338–2347, 2016.

[8] R. Fu, Z. Zhang, and L. Li, “Using lstm and gru neural network methods
for traffic flow prediction,” Nov 2016, pp. 324–328.

[9] D. Ergenç and E. Onur, “On network traffic forecasting using autore-
gressive models,” Dec 2019.

[10] B. Yu, G. Graciani, A. Nascimento, and J. Hu, “Cost-adaptive neural
networks for peak volume prediction,” in n Proceedings of Beijing
’19: ACM International Conference on Information and Knowledge
Management, 2019.

[11] C. Chatfield and H. Xing, The Analysis of Time Series: An Introduction
with R, 7th ed. Chapman and Hall/CRC, 2019.

[12] R. H. Shumway and D. S. Stoffer, Time Series Analysis and its
Applications with R Examples, 4th ed. Springer, 2017.

[13] I. Soyiri and D. Reidpath, “Evolving forecasting classifications and
applications in health forecasting,” International Journal of General
Medicine, vol. 5, pp. 381–389, 2012.

[14] E. M. Pickering, M. A. Hossain, R. H. French, and A. R. Abramson,
“Building electricity consumption: Data analytics of building operations
with classical time series decomposition and case based subsetting,”
Energy & Buildings, vol. 177, pp. 184–196, Oct 2018.

[15] B. Lewis, R. Herbert, and R. Bell, “The application of fourier analysis to
forecasting the inbound call time series of a call centre,” in Proceedings
of the International Congress on Modeling and Simulation MODSIM03,
Townsville, Australia, 2003, pp. 1281–1286.

[16] O. Christensen, The fourier transform. Springer International Publish-
ing, 2010, no. 9780817649791.

[17] J. P. Hermias, K. Teknomo, and J. C. N. Monje, “Short-term stochastic
load forecasting using autoregressive integrated moving average models
and hidden markov model,” in 2017 International Conference on Infor-
mation and Communication Technologies (ICICT), vol. 2017-. IEEE,
2017, pp. 131–137.

