
Weight-Based Deep Model Compression of DGA
Detectors for Small Devices

by

Nussara Tieanklin

Supervised by Dr. Juhua Hu

A senior thesis submitted in partial fulfillment of the departmental honors requirements for the degree of

Bachelor of Science
Computer Science & Systems

University of Washington Tacoma

June 2021

Presentation of work given on June 2, 2021.

The student has satisfactorily completed the Senior Thesis, presentation and senior elective course requirements for CSS
Departmental Honors.

Faculty advisor: ___________________________________ Date_______________________

CSS Program Chair: _______________________________ _ Date_______________________

 06/14/2021

06/21/2021

CSS HONOR THESIS: WEIGHT-BASED DEEP MODEL COMPRESSION OF DGA DETECTORS FOR SMALL DEVICES 1

Weight-Based Deep Model Compression of
DGA Detectors for Small Devices

Abstract - The sophisticated model such as deep neural
networks (DNNs) based architecture is capable of handling
Domain Generating Algorithms (DGAs) malware threats
particularly well. Regardless of such remarkable success,
DNN models have high computational and storage overhead.
It is very difficult to deploy the model into the
resource-constrained devices that everyday users have
access to, such as mobile phones, home routers, embedded
gadgets, or IoT devices. In this thesis, we explore an
effective way to compress the DNN model while preserving
the effectiveness and enhancing the efficiency. We introduce
filter by filter pruning together with additional
pre-processing techniques, such as normalization to avoid
any biases from dominant values, and a clustering technique
to identify redundancy to remove. Adapting the proposed
weight-based deep model compression methodology to the
pre-trained DGA classifiers, we are able to facilitate the
DNN model size reduction by removing 40% of the filters,
while preserving the effectiveness of the model. Therefore,
reducing energy consumption and memory overhead, our
proposed methodology facilitates accessibility of many deep
model applications, promotes higher security measures, and
enables energy saving for day-to-day users.
Index Terms - Deep Learning, Model Compression,
Pruning, Clustering

INTRODUCTION

Many malware attacks have caused significant losses to
governments, private sectors, industries, and various main
information infrastructures. One of the well-known malware
is the Domain Generating Algorithms (DGAs). DGA is a
popular technique unscrupulous players use to install
malwares by dynamically generating ten of thousands of
domain names daily, and the majority are unregistered. They
masquerade the registered domains, allowing the infected
botnets to slip through and evade automatic detections from
cybersecurity measures. DGAs employ various malwares
families that challenge the command-and-control (C&C)
countermeasure.

A variety of strategies have been proposed to detect
the DGAs malwares. In recent years, many efforts have been
devoted to finding effective malware defenses to protect our
cyberspace on computers and networks. One of the previous
work is using a Hidden Markov Model (HMM) framework
to generate distributions of DGA malware families and
benign domains [7]. With the increasing severity of the
damage from cybersecurity threats, it requires a
highly-developed approach to target the entire DGA
malware families. Deep neural networks (DNN) model, a
part of the Machine Learning family, has proven to be one of

the most effective approaches [9, 10, 11]. Particularly, the
DNN model is trained on a pre-registered or blacklist of all
the domains, which are static and in a sequence of characters
or words, the model can easily recognize infected domain
names to help prevent invasion on C&C. The convolutional
neural network (CNNs) based architecture of the DNN
model outperforms other models by effectively identifying
malicious and difficult-to-detect DGA families. Despite its
sophisticated performance, the challenge presented by neural
network models is that they can only operate in larger
systems due to their size. In response to rapidly growing
numbers of Internet of Things (IoT) devices, we seek to
compress the model to improve its usability and allow them
to operate in smaller and affordable IoT or edge devices.

As the continuation of the prior work of the CNN
model, which was pre-trained by the Data Scientist team at
Infobox, we explore various technical discoveries to
downsize the model while preserving the effectiveness and
improving the efficiency. In this thesis, inspired by the
pruning technique proposed in [1], we focus on using a basic
but rather powerful property, such as weights in the
convolutional layer to locate redundant information involved
in the pre-trained model and thus remove them for model
compression. Instead of doing neuron by neuron pruning
that is time consuming and computationally expensive, we
propose to do filter by filter pruning, where each filter
contains a certain number of neurons depending on the size
designed by the neural network, where each neuron is
associated with a weight. Another benefit of filter by filter
pruning is that the corresponding following layers can be
pruned accordingly.

Each filter is represented by a matrix. To find
redundant filters, it is important to define the similarities
between filters. Then, similar filters can be removed for
compression. We propose to do clustering over filters or
group similar filters together. As a pre-processing step for
similarity calculations of filters, we normalize their weights
into a specific range to avoid any potential bias that can be
introduced by dominating large weights and flatten each
filter from a matrix format to a vector format to be fed to a
clustering algorithm. Considering that we do not have any
domain knowledge to provide a predefined value of how
many clusters all the filters can group, we adopt HDBSCAN
[6] as our clustering method. HDBSCAN groups redundant
filters in the same cluster, without requiring an input on the
number of clusters needed. Additionally, it works
particularly well with data that have varying density.

After applying this methodology to the pre-trained
DGA classifier, some filters are grouped together into one
cluster. Then, we can remove certain redundant filters within

2 NUSSARA TIEANKLIN

a cluster to compress the deep model. We propose to use the
sum of absolute weights to indicate one filter’s importance.
Intuitively, higher the weight sum, more important the filter.
Thereafter, we can remove filters within a cluster of less
importance, so that it will not degenerate the model’s
prediction performance. By removing filters in one cluster
according to their importance, we are able to remove around
40 percent of filters without sacrificing too much prediction
performance. This demonstrates the effectiveness of the
proposed weight-based methodology for deep model
compression to promote accessibility and security in small
and affordable devices for everyday users.

RELATED WORK

Our work has drawn a variety of related works on model
compression, particularly on pruning, and clustering (i.e.,
HDBSCAN). All details are listed below.

I. Model Compression

Working with multiple layers of neural networks within the
deep learning model can often be so computationally
intensive that it is unsuited for lightweight IoT devices. The
majority of existing deep model compression methods apply
a pruning method to decrease the model size utilizing the
weight information in the convolutional layer. Though our
work has incorporated more fine-tuned pruning, there are a
number of scholars working on refining the state-of-art
pruning that this work draws from.

Network pruning is one of the basic and popular
approaches that aim to reduce redundancy and compress the
heavyweight model. The majority of pruning network
techniques are derived from an algorithm proposed by Han
et al. [1]. The algorithm is first trained to find meaningful or
dominant criteria. Then each of the parameters in the
network is issued a score. The network will then use these
scores as a reference to prune the model, anything below a
threshold will be removed. Since pruning on the first
iteration reduces the accuracy, pruning is then followed by
greedy iterative prunings to retrain such iteration (known as
fine-tuning) to improve the accuracy. This will help establish
the best connection or dominant criteria of each parameter.
During the retraining phase, the redundant information or
parameters with zero connection can be automatically
removed safely using gradient descent and regularization
reducing the network size while preserving the model
accuracy. The author mentioned that probabilistically
pruning parameters based on their absolute value provides
worse results. The literature review [2] found that many
papers have proposed a variation of the algorithm such as a
technique of pruning that starts at initialization [3],
periodically prunes while training [4], or even include
additional parameters to use as a score to prune [5].

Various techniques of pruning can accomplish
many different goals that favor different design choices,
requiring different metrics of evaluation. This includes
reducing storage requirements, computational cost, energy
consumption, and etc. Regardless of efficiency, the

non-structure sparse model from Han et al. [1] can not be
supported by off-the-shelf libraries, thus it requires
specialized hardware and software, which is not practical
and expensive. More importantly, the issued importance
scores from many pruning strategies often disregard less
relevant parameters entirely and only take more dominant
neurons into account of evaluation. Different from these
existing pruning techniques that require a certain degree of
training or retraining involved, this thesis aims to develop a
pruning method applicable for pre-trained GDA classifiers
without any additional retraining.

II. Clustering

Clustering establishes natural grouping or clusters within
multidimensional data based on some similar measures [13].
Therefore, this is a popular technique that can be used to
group similar items, while we also aim to find similar filters
in this work. Existing clustering techniques can be
categorized into two main directions: point assignment
based approaches and hierarchical clustering approaches
[14]. Point-assignment based algorithms like k-means [15]
often require an additional input as the number of clusters
needed, which is very hard to decide in advance in our
problem. Therefore, we adopt the hierarchical clustering
method in this work to find redundant filters.

Specifically, Hierarchical Density-Based Clustering
(HDBSCAN) is used. HDBSCAN is implemented based on
Density-based-spatial clustering of applications with noise
(DBSCAN) [6]. DBSCAN separates clusters with high
density from low density. It works particularly well in
sorting data into clusters of varying sizes and shapes. It will
also detect and ignore the outliers as noises. However, for
clusters that have varying density, DBSCAN fails to
recognize that some of the noises are a part of the cluster. So
it separates the very low-density noises into their own
individual mini clusters. HDBSCAN, on the other hand,
performs clustering better in the datasets when it comes to
such varying density as the algorithm will focus on
clustering high density. Besides, HDBSCAN requires less
predefined parameters than DBSCAN to perform clustering,
which is better suited in our problem. Finally, at the 200,000
record points, DBSCAN algorithm takes twice as much time
as HDBSCAN would [6], and thus HDBSCAN’s efficiency
in finding groups of filters is also desired.

METHODOLOGY

Given a pre-trained neural network, in this section, we aim
to compress the model by looking at the convolutional
layers. Specifically, in the convolutional layer, a deep neural
network for DGA classification often contains filters and𝑁
each filter is a matrix of size as shown in the left plot𝑛 × 𝑚
of Figure 1, where is the specific elements of the input to𝑛
perform the filter pruning and is the embedding size.𝑚
Instead of looking at each weight in each matrix one by one
to remove less important elements, which is time consuming
and hard to compress the following layers accordingly, we
aim to find redundant filters by looking at each matrix (i.e.,

CSS HONOR THESIS: WEIGHT-BASED DEEP MODEL COMPRESSION OF DGA DETECTORS FOR SMALL DEVICES 3

each filter) as a whole. Consequently, if a filter is removed,
the corresponding following layers of this filter can be
removed accordingly to easily compress the whole model
not just within the convolutional layer.

Figure 1: Weight normalization

As a first step to remove redundant filters, it is
intuitive to check if there is any filter whose weights are too
low to be useful. It should be noted that, in a pre-trained
model, it is often hard to find a filter whose weights are all
zeros. Therefore, we aim to group similar filters, so as to
find redundant filters within a cluster and remove them to
compress the model. Because the values in a matrix of a
filter can be any real value, matrices with large values in
matrices may dominate the similarity calculation. Therefore,
we first normalize the weights for all filters into range

and flatten the matrix to a vector for the ease of[− 1, 1]
similarity calculation. Specifically, as shown in Figure 1, we
often use bigrams to represent a domain name in GDA
classification and thus . Therefore, the new vector𝑛 = 2
representation of each filter will be of size

.(𝑛/2) × (2𝑚) = 1 × (2𝑚)

Now given the vector representation of each filter
whose element values are in range , we are aiming[− 1, 1]
to find the redundancy between these filters. It is
straightforward to apply a clustering algorithm to group
similar filters together and thus the redundant filters can be
discovered within each formed cluster. Therefore, we feed
the vectors to HDBSCAN to cluster the filters as shown in
Figure 2.

Figure 2: Clustering

With the filters grouped in clusters, it is intuitive to
consider that all filters in one cluster are similar and thus are
redundant. Therefore, a simple way to compress the model is
to keep only one representative filter in each cluster.
However, due to the definition of different similarity
functions, some important local weights can be hidden.
Blindly keeping only one filter in each cluster may
degenerate the model’s prediction performance. Therefore,
we proposed to calculate the importance score of each filter
within a cluster using the absolute sum of weight values.
Assembling the normalization, clustering, and sorting
algorithms, we can describe the full pipeline of the proposed
methodology in Figure 3. Then, the filters in each cluster can
be gradually removed from the cluster according to their
importance score (i.e., removing from the lowest important
filter until the 2nd highest important filter). Thereafter, a
specific number of filters within each cluster can be
removed according to the performance impact based on
some sufficient test data.

Figure 3: The overall procedure of the proposed
methodology prior gradual removal in each cluster.

EXPERIMENT

In this section, we aim to evaluate the proposed deep model
compression method using a pre-trained DGA classifier (i.e.,
a CNN model) and sufficiently large test data.

I. Model Information

The dataset and the initial uncompressed model [10] are
provided by the Data Science team from Infobox company.
The detailed model architecture is illustrated in Figure 4. It
has (1) an embedding layer, (2) a convolutional layer, (3) a
dropout layer, and (4) two dense layers. It can be observed
that this model accepts a domain name in the length of 63
characters, where a domain name’s Second Level Domain
(SLD) name is used as the input. It should be noted that not
every domain name’s SLD is of length 63. Therefore, zeros
are padded in front to make the same length of input.

4 NUSSARA TIEANKLIN

Figure 4: Model Architecture

Then, each character is embedded to a new space,
where the dimensionality is 128. More importantly, this
pre-trained model contains 1,000 filters in the convolutional
layer, which contributes a huge amount of parameters in the
first dense layer after the flatten layer. Now, considering an
example of compression by removing 500 filters, we can
reduce half the number of parameters for both the
convolutional and the 1st dense layer, and thus reduce about
50% of the model size.

The provided Qname8 dataset contains 27 millions
of possible malicious and 27 millions possible benign
domain names. The domain names are represented using a
total of 75 columns, but we are only interested in the SLD
name string representing only the first 63 characters. Any
names longer than 63 characters are truncated, any shorter
ones are padded with zeros. We take two subsets of domain
names from this dataset as our test data, which are the 1st

100k and 2nd 100k domain names in Qname8. The basic
statistics of these two subsets are summarized in Table I. It
can be observed that each test data contains a certain number
of malicious and benign domain names. The prediction
accuracy of the pre-trained model on these two subsets are
varying around 95%, which indicates two varied test data for
fair evaluation.

TABLE I
BASIC INFORMATION OF THE TWO DIFFERENT SUBSETS OF TEST DATA

Subsets of test
data

Performance
(without any
removal)

#malicious (1) and
#benign (0) samples

1st 100k of
Qname8 97.544 %

54,432 (1) and 40,504 (0)

2nd 100k of
Qname8

94.726% 35,725 (1) and 57,256 (0)

II. Weight Normalization and Clustering

As mentioned, the convolutional layer (see the
yellow-highlight in Figure 4) has a total of 1,000 filters, each
of size . There is no filter whose weights are all2 × 128
zeros, which empirically confirms our statement in the
methodology. The weight distribution looking at all filters is
summarized in Figure 5. In summary, the weights of filters
are in the range of [-1.49, 1.40] with an average weight of
-0.01.

Figure 5: The weight distributions

CSS HONOR THESIS: WEIGHT-BASED DEEP MODEL COMPRESSION OF DGA DETECTORS FOR SMALL DEVICES 5

To avoid any potential bias due to varying density
and dominant values of weights among the filters, the
weights of the convolutional layer are normalized to be in
range [-1, 1]. Afterward, each filter is flattened to be in a
vector form size to be feeding into the2 × 128 1 × 256
clustering algorithm. The normalized weights are then
clustered using HDBSCAN algorithm to identify similarities
among the filters.

We perform HDBSCAN over the 1,000 filters with
default parameters, where Euclidean is used as a metric with
at least 2 filters in each cluster. The clustering algorithm
results in a total of 6 clusters. It starts with a cluster group of
-1 to be a cluster of outliers. Cluster 3 comes out to be the
SuperCluster as it contains the most number of filters in the
cluster. The rest of the clusters have only 2 filters in each
cluster. Table II summarizes the number of filters in each
cluster.

TABLE II
CLUSTERS STRUCTURE SUMMARY

Cluster Number Number of Filters

-1 228

0 2

1 2

2 2

3 764

4 2

Total 1,000

III. Cluster Investigation

After the clusters are identified, as mentioned in the
proposed methodology, we sort the filters in each cluster
according to the absolute sum of the weights as the
importance score. The higher of the sum indicates the
greater importance of the filter. In this subsection, we
investigate for each cluster on how removing each filter
within a cluster is going to affect the prediction performance
on the test data.

With similar filters grouped in each cluster, each
cluster allows us to remove certain redundant and less
important filters to favor model size reduction, while still
being able to preserve the model’s effectiveness in malware
detection. In the following subsections from A through C,
we perform a series of fine-grained experiments to evaluate
the model’s performance change trends when the number of
filters kept in each cluster is changed according to their
importance. Specifically, we evaluate the model’s prediction

accuracy on each test data when the number of filters kept in
each cluster is increased one by another. That is, the most
important one is kept at first and then the next important one
is added until all filters are kept.

A. Cluster -1 (Outliers)
As we know, cluster -1 should be a cluster of outliers and no
correlation is expected. Figure 6 shows the accuracy change
on both test data when the number of filters kept in cluster -1
is increased. It can be observed that the 1st 100k (top) and 2nd

100k (bottom) of the Qname8 data are showing opposite
trends in accuracy although the same sequence of filters are
kept. Therefore, it is not desired to remove any filters in
cluster -1 for compression.

Figure 6: Cluster -1’s model prediction shows opposite
trends among the two test data when keeping filters with
regards to their importance score (i.e., the x-axis shows the
number of filters kept).

B. Clusters 0, 1, 2, and 4 (small clusters with 2 filters)

According to the cluster structures in Table II, cluster 0, 1, 2,
and 4 have only 2 similar filters being grouped in each
cluster. We find that removing one less important filter in
any of these clusters results in very slight change in model’s
prediction accuracy on both test data. For example,

6 NUSSARA TIEANKLIN

removing the less important filter in cluster 1, 2, or 4 will
not change the model’s performance as shown in Figure 7
for cluster 1, and that of cluster 0 will only decrease the
accuracy by about only 0.004%. Therefore, it demonstrates
that groups of filters discovered by clustering can be used to
find redundant filters, where less important ones can be
removed for model compression.

Figure 7: Cluster 1’s model prediction changes trend when
keeping filters with regards to their importance score (i.e.,
the x-axis shows the number of filters kept).

C. Cluster 3 (SuperCluster)

As cluster 3 is one of the largest clusters, it contains a total
of 764 filters as shown in Table II, we refer to this cluster as
SuperCluster. With the similar fashion as the rest of the
cluster, SuperCluster’s filters are kept in the same sequence
with regards to their importance score.

Figure 8 illustrates the model’s prediction
performance changes when the number of kept filters is

increasing for both test data. It can be observed that the
accuracy is generally increasing for the 1st 100k, while that
of the 2nd 100k has some fluctuation. The general increasing
trend indicates that our importance score using the sum of
absolute weights is not ideal but useful.

Interestingly, we can observe that by keeping about
450 filters for the SuperCluster (i.e., removing about 314
filters), we can have the same prediction accuracy for the 1st

100k as the original model without reduction, while
surprisingly increasing the prediction accuracy for the 2nd

100k. Furthermore, we will not sacrifice the model’s
performance too much (at most 1% drop) if keeping only
half of the filters in the SuperCluster (i.e., removing 382
filters). Therefore, we propose to remove 382 filters from
the SuperCluster to reduce the model size.

Figure 8: SuperCluster’s model prediction illustrates an
increasing trend when keeping more filters with regards to
their importance score (i.e., the x-axis shows the number of
filters kept).

CSS HONOR THESIS: WEIGHT-BASED DEEP MODEL COMPRESSION OF DGA DETECTORS FOR SMALL DEVICES 7

IV. Model Size Reduction

Based on the investigation in the above subsection, we
propose to reduce the model size by removing the less
important filters in each small cluster (i.e., cluster 0, 1, 2 and
4) and removing 382 less important filters in the
SuperCluster (i.e., cluster 3). The following Table III shows
the performance summary of the original model and its
reductions on each test data. It can be observed that the
original model has prediction accuracy of 97.54% for the 1st

100k and 94.73% for the 2nd 100k. After we remove the
SuperCluster in half with the 382 filters being disregarded,
the accuracy for the 1st 100k drops less than 1% while that
for the 2nd 100k in fact increases slightly. By further
removing the 4 less important filters from each small cluster,
we can keep almost the same level of prediction
performance, in which we can remove 386 filters in total. In
summary, this is about 40% of model size reduction
considering removing the corresponding channels in the
dense layer.

TABLE III
PERFORMANCE SUMMARY

Model Performance
0 - 100K

Performance
100K - 200K

Filter
Removed

Original 97.54% 94.73% 0

Removed Half
SuperCluster

96.67% 95.18% 382

Keep the highest
weight in 0,1,2,4
and half
SuperCluster

96.65% 95.18% 386

To further demonstrate our proposed method for
model compression, we show how the choices of other
clusters (i.e., except the SuperCluster) will affect the model’s
performance when gradually changing the SuperCluster in
Figure 9. The four choices included for discussion are 1)
keep all other clusters, that is, no reduction in other clusters;
2) keep cluster -1 (i.e., outliers) and the highest important
filters in small clusters (i.e., cluster 0, 1 2, and 4), that is, our
final reduction; 3) remove the whole cluster -1 while
keeping the highest important filters in small clusters; and 4)
remove all other clusters. Figure 9 demonstrates our final
reduction illustrated by the green line. More importantly, it
can be observed that we can further remove all other clusters
if we can keep a few more filters in the SuperCluster without
sacrificing the performance too much. This further
demonstrates the effectiveness of the proposed weight-based
model compression method.

Figure 9: Performance summary of gradually changing
SuperCluster on different choices of other clusters (the black
dash line indicates the original model’s accuracy).

CONCLUSION AND FUTURE WORK

The widespread use of many malware families generated by
DGAs to establish command and control (C&C) connection
by the threat actors has made it difficult for defenders to
prevent the attacks. DGAs is developed specially so that
malwares can generate a list of domains for the attackers to
use during malware attacks. In the past, software security
can simply block and take down the malicious domains that
are often listed in the blacklist. However, the algorithm
allows the attackers to switch to a different unknown domain
to attack, making it more difficult for security measures to
detect these malicious domains. Not to mention that the
defenders have to go through the process working with ISP
and decode the algorithm to take down the malicious domain
one by one. Thankfully, the convolutional neural network
(CNNs) have enhanced the capability for predicting
incoming domain features from the machine learning

8 NUSSARA TIEANKLIN

framework and the ground truth datasets. Yet, such models
require more storage space and power than the majority of
affordable IoT devices can handle, which everyday users
have access to.

Introducing our proposed methodology, instead of
pruning neuron by neuron which is time consuming, we
introduce filter by filter pruning incorporated with
normalization of the weights and HDBSCAN clustering to
identify similarities among filters for compression. The
results prove for the given data that we can retain the same
prediction model performance compared to the
uncompressed model, while being able to remove about 40%
of the model size considering that the dense layer will also
be further reduced. However, we did find that the
importance score based on the sum of absolute weights is
not an ideal importance indicator, where the monotonicity
cannot be observed. Moreover, a special property of the
domain names has been ignored in this work, that is, we
have a finite number of characters that are used in domain
names. Therefore, we have a finite set of bigrams. This
information can be used to do activation-based model
compression, which will be an interesting future direction to
do deep model compression in malware detection.

REFERENCES

[1] Han, S., Pool, J., Tran, J., & Dally, W. (2015).
Learning both Weights and Connections for
Efficient Neural Network. ArXiv, abs/1506.02626.

[2] Blalock, D.W., Ortiz, J.G., Frankle, J., & Guttag, J.
(2020). What is the State of Neural Network
Pruning? ArXiv, abs/2003.03033.

[3] Lee, N., Ajanthan, T., & Torr, P.H. (2019). SNIP:
Single-shot Network Pruning based on Connection
Sensitivity. ArXiv, abs/1810.02340.

[4] Gale, T., Elsen, E., & Hooker, S. (2019). The State
of Sparsity in Deep Neural Networks. ArXiv,
abs/1902.09574.

[5] Molchanov, D., Ashukha, A., & Vetrov, D. (2017).
Variational Dropout Sparsifies Deep Neural
Networks. ArXiv, abs/1701.05369.

[6] McInnes et al, (2017), hdbscan: Hierarchical
density based clustering, Journal of Open Source
Software, 2(11), 205, doi:10.21105/joss.00205.

[7] Antonakakis, M., Perdisci, R., Nadji, Y.,
Vasiloglou, N., Abu-Nimeh, S., Lee, W., & Dagon,
D. (2012). From Throw-Away Traffic to Bots:
Detecting the Rise of DGA-Based Malware.
USENIX Security Symposium.

[8] The hdbscan Clustering Library. The hdbscan
Clustering Library - hdbscan 0.8.1 documentation.
(n.d.). https://hdbscan.readthedocs.io/.

[9] Sivaguru, Raaghavi & Choudhary, Chhaya & Yu,
Bin & Tymchenko, Vadym & Nascimento,
Anderson & De Cock, Martine. (2018). An
Evaluation of DGA Classifiers. 5058-5067.
10.1109/BigData.2018.8621875.

[10] Yu, Bin & Pan, Jie & Gray, Daniel & Hu, Jiaming
& Choudhary, Chhaya & Nascimento, Anderson &
De Cock, Martine. (2019). Weakly Supervised
Deep Learning for the Detection of Domain
Generation Algorithms. IEEE Access. 7.
51542-51556. 10.1109/ACCESS.2019.2911522.

[11] Li, Yi & Xiong, Kaiqi & Chin, Tommy & hu,
Chengbin. (2019). A Machine Learning Framework
for Domain Generation Algorithm (DGA)-Based
Malware Detection. IEEE Access. PP. 1-1.
10.1109/ACCESS.2019.2891588.

[12] Luo, Jian-Hao & Wu, Jianxin & Lin, Weiyao.
(2017). ThiNet: A Filter Level Pruning Method for
Deep Neural Network Compression.

[13] Berkhin P. (2006) A Survey of Clustering Data
Mining Techniques. In: Kogan J., Nicholas C.,
Teboulle M. (eds) Grouping Multidimensional
Data. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-28349-8_2

[14] Xu, Rui & Wunsch, Donald. (2005). Survey of
Clustering Algorithms. Neural Networks, IEEE
Transactions on. 16. 645 - 678.
10.1109/TNN.2005.845141.

[15] Jain, A.K., Murty, M.N., & Flynn, P. (1999). Data
clustering: a review. ACM Comput. Surv., 31,
264-323.

https://doi.org/10.1007/3-540-28349-8_2

