Fun with Pfaffians

History

Pfaffians are a matrix function introduced in 1815. Arthur Cayley proved a connection between the Pfaffian and determinant of a matrix. Specifically, for skew-symmetric matrices, the determinant is equal to the Pfaffian squared.

Definitions

The determinant:
Given an $n \times n$ matrix A, the determinant of
$A = \langle a_{i,j} \rangle$ is
$det(A) = \sum_{\sigma \in S} sgn(\sigma) a_{1,\sigma_1} a_{2\sigma_2} \dots a_{n,\sigma_n}$
with S_n being all the permutations of
$[n] = \{1, 2, \dots, n\}.$
The Pfaffian:
Given a $2n \times 2n$ skew-symmetric matrix $A = \langle a_{ij} \rangle$, the Pfaffian is
$Pf(A) = \sum \operatorname{sgn}(\rho) a_{\rho_1,\rho_2} \dots a_{\rho_{2n-1},\rho_{2n}}$
ρ where ρ is a matching and sgn(ρ) is -1 raised to
the number of chord crossings in ρ .
Example
$A = \begin{bmatrix} 0 & 2 & 1 & 1 \\ -2 & 0 & 1 & 0 \\ -1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} $ Of {1,2,3,4}, there are three
$\begin{bmatrix} -2 & 0 & 1 & 0 \\ -1 & -1 & 0 & 3 \\ -1 & 0 & -3 & 0 \end{bmatrix} \begin{array}{c} \text{Of } \{1,2,3,4\}, \\ \text{there are three} \\ \text{possible} \end{bmatrix}$
$ \begin{vmatrix} A \\ -1 \\ -1 \\ -1 \\ -1 \\ 0 \\ 3 \end{vmatrix} = \begin{cases} Of \{1, 2, 3, 4\}, \\ there are three \end{cases} $
$\begin{bmatrix} -1 & 0 & -3 & 0 \end{bmatrix}$ possible
matchings:
These correspond with
the following elements
of the matrix:
0 2 1 1
-2 0 1 0
-1 -1 0 3
$ _{-1} 0 -3 0 $
Contributions to the sum:
Purple: $1 \cdot (2 \cdot 3) = 6$
Green: $-1 \cdot (1 \cdot 0) = 0$
Blue: $1 \cdot (1 \cdot 1) = 1$
Total: $6 + 0 + 1 = 7$.
Thus $Df(A) = 7$ The determinant is the Dfaffian
Thus $Pf(A) = 7$. The determinant is the Pfaffian squared, so det $(A) = 49$
$Squarea, Souch(n) = \pm j$

A =

