Fun with Pfaffians

Kaioke Begay
 TMATH 498 Independent Reading । Jennifer Quinn, Ph.D

History

Pfaffians are a matrix function introduced in 1815. Arthur Cayley proved a connection between the Pfaffian and determinant of a matrix Specifically, for skew-symmetric matrices, the determinant is equal to the Pfaffian squared.

Definitions

The determinant:

Given an $n \times n$ matrix A, the determinant of $A=\left\langle a_{i, j}\right\rangle$ is

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1, \sigma_{1}} a_{2 \sigma_{2}} \ldots a_{n, \sigma_{n}}
$$

with S_{n} being all the permutations of

$$
[n]=\{1,2, \ldots, n\} .
$$

The Pfaffian:

Given a $2 n \times 2 n$ skew-symmetric matrix $A=\left\langle a_{i j}\right\rangle$, the Pfaffian is

$$
P f(A)=\sum_{\rho} \operatorname{sgn}(\rho) a_{\rho_{1}, \rho_{2}} \ldots a_{\rho_{2 n-1}, \rho_{2 n}}
$$

where ρ is a matching and $\operatorname{sgn}(\rho)$ is -1 raised to the number of chord crossings in ρ.

Contributions to the sum:

Purple:	$1 \cdot(2 \cdot 3)=6$
Green:	$-1 \cdot(1 \cdot 0)=0$
Blue:	$1 \cdot(1 \cdot 1)=1$
Total:	$6+0+1=7$.

Thus $\operatorname{Pf}(A)=7$. The determinant is the Pfaffian squared, so $\operatorname{det}(A)=49$

Matchings and Permutations

Pfaffian Exploration

For $\rho=\left\{\rho_{1}, \rho_{2}\right\}, \ldots,\left\{\rho_{n-1}, \rho_{n}\right\}$, find the first chord $\quad \operatorname{Pf}(A)=$?
whose length ≥ 2 and do a swap with the subsequent

chord. New matching is ρ^{\prime}.

Every ρ has a ρ^{\prime} except the

Adding Zeros

Question: Can we take the prior example and change a 1 to a 0 ?

- We can make the same correspondence as the prior example. - All the "reduced" matchings cancel except the consecutive one. - $P f(A)$ is either 0 or 2 depending on whether removing the "zerochord" changed the sign.

What does this look like?

Put a 0 here and $P f(A)=$

Adding More Zeros

A $2 n \times 2 n$ skew-symmetric matrix with whose upper triangular consists of
alternating diagonals of 1 s and 0 s , where the super-diagonal is all 1 s , will be 2^{n-1}.
$\left[\begin{array}{cccccc}0 & 1 & 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 1 \\ -1 & 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \\ -1 & 0 & -1 & 0 & -1 & 0\end{array}\right]$
moras zero out the

Even chords zero out the matching, so only matchings of all odd chords contribute.

his matching would contribute!

- We can create a correspondence between oddchord matchings that cancels most of them out
- Remaining matchings can be mapped to evenorder subsets of the set with 2^{n} elements

References

Cameron, Quinn. Pfaffians are Pfine. Math Magazine, to appear.

UNIVERSITY of WASHINGTON

Recognition

Thanks to Dr. Jennifer Quinn for supervising and supporting this exploration.
exploration.
Thanks to the entire math departme students and faculty, for providing such a supportive environment for mathematical growth.

