Designing a CRISPR-Cas9 system for site specific mutagenesis of the Dsnl protein in S. cerevisiae
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Background

During normal cell division, chromosome segregation is a
critical step in ensuring daughter cells receive the correct
number of chromosomes. A step in the chromosome
segregation process involves kinetochores, large protein
complexes located on centromeres where spindle microtubules
attach. Before a cell can proceed through metaphase and into
anaphase, there must be correct attachment between both the
kinetochore and microtubules, as well as adequate tension,
through a process known as the spindle assembly checkpoint
(SAC). -

Figure 2. Incorrect attachment of spindle.
microtubulesto sister chromatids. This condition
leads to aneuploidy. Created with

biorender.com

Figure 1. A cell undergoing metaphase into anaphase.
This process requires accurate assembly of the spindle
microtubules. Created with biorender.com.

Dsn1, a protein located within the outer kinetochore, plays an
important function in the attachment of spindle microtubules and
the assembly of kinetochore subcomplexes involved in the

SAC. Mps1 kinase, a component of the SAC, has been shown
to phosphorylate specific sites on Dsn1, which are known to
impact chromosome segregation. Mps1 kinase is prone to
phosphorylating specific sites where amino acid threonine is
flanked by two acidic amino acids.
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We have identified site 491 of the Saccharomyces cerevisiae
Dsn1 protein as a potential Mps1 kinase target sequence due to
this context and known conservation of this amino acid
sequence throughout closely related species. To measure
whether this phosphorylation site is important to the function of
Dsn1, we are designing a CRISPR-Cas9 system to mutate
codon 491 and test for the function of that mutation. We
designed a small guide RNA (sgRNA) encoding sequence and
cloned it into a CRISPR vector. We also created a homology
directed repair DNA template (DR) that was designed to target
site 491 and cause a phospho-null missense mutation. We
combined these designed templates into a transformation
involving S. cerevisiae cells. Future continuation of this project
will determine if the mutation at site 491 was correctly inserted

.« into S. cerevisiae.
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Figure 10. Transformation of our CRISPR vector into E. coli. The non-glowing colonies represent £. coli

with sgRNA cloned into the CRISPR vector.
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Figure 12, Transformation of S. cerevisiae cells with CRISPR vector and HDR template.
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« Gel electrophoresis ran after the restriction digest of
the CRISPR vector shows successful removal of the
GFP marker gene.

We used Gibson Assembly to create our CRISPR-
Cas9 vector with our designed sgRNA template.

The CRISPR vector was successfully transformed
into E. coli cells.

Sanger sequencing of CRISPR vectors purified from
an E. coli colony confirmed the successful
integration of sgRNA template sequence.

Our CRISPR-Cas9 system was successfully
transformed into S. cerevisiae cells.

« Isolation of separate colonies and Sanger
sequencing to verify mutagenesis.

» Phenotypic testing (benomyl and heat stress) on
colonies to observe for cell division discrepancies.

+ Conduct mutagenesis on other noted potential
phosphorylation sites within the Dsn1 protein.
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Figure 13. Future testing of S. cerevisiae
colonies using both 15 and 30 pg/mL benomyl
‘agar plates. Created with biorender.com.
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Figure 14. Future testing of S. cerevisiae colonies
under 30°C and 37°C conditions. Created with
biorender.com.




