**Proposed Educational Community Garden Locations**
in Tacoma, Washington  
Christina McAllister, University of Washington-Tacoma Environmental Science Program

### Purpose
Urban gardening is an expanding practice in Tacoma, with numerous community gardens already thriving in this highly urbanized city. These gardens give community members the ability to grow fresh, affordable produce, where availability would otherwise be limited. With community gardens located throughout Tacoma, a wide range of individuals are able to do so. However, despite the abundance of community gardens, there is a lack of space that is designed for the youth of Tacoma.

### Objectives
My goal for this project was to locate vacant parcels of land, throughout Tacoma, that could be used as an educational community garden. Parcels were chosen based on physical and locational information.

### Methods
I began my analysis by geocoding a variety of addresses that corresponded to community organizations included YMCA’s, daycares, recreation centers, etc. Each geocoded address was then exported to a point and placed on my map. Once all data was downloaded to a temporary file, I began adding each file to either my file geodatabase or feature dataset; both of which were created before data was collected.

Upon completion of the general extent and level of each downloaded file, I began a network analysis of my data. Within the network analysis, a 1, 5, and 10 minute walking service area was placed around each point of data including schools, parks, and community and recreation centers. I chose this as I would want every student to be able to walk to the garden and thusly promote activeness, which is an added bonus of my project. Furthermore, including the community centers will promote community awareness and involvement.

After all service areas were formed, I began determining which parcels of land would service the most entities by narrowing down the vacant parcels that were completely within the service areas of the community centers. The result of this analysis were vacant parcels that would serve the most community centers. I then took these results and conducted the same analysis with park locations, then finally with the schools (each school level continued my analysis by taking those remaining parcels and determining which ones lacked impervious surface. In the end, I had three vacant parcels that could be used for a garden.

### Acknowledgements
First and foremost, thank you to Matthew Kelley for your guidance and support on this project. Additionally, thank you to Monty Smith with the Northwest Community organizations included YMCA’s, daycares, recreation centers, etc. Each geocoded address was then exported to a point and placed on my map. Once all data was downloaded to a temporary file, I began adding each file to either my file geodatabase or feature dataset; both of which were created before data was collected.

Upon completion of the general extent and level of each downloaded file, I began a network analysis of my data. Within the network analysis, a 1, 5, and 10 minute walking service area was placed around each point of data including schools, parks, and community and recreation centers. I chose this as I would want every student to be able to walk to the garden and thusly promote activeness, which is an added bonus of my project. Furthermore, including the community centers will promote community awareness and involvement.

After all service areas were formed, I began determining which parcels of land would service the most entities by narrowing down the vacant parcels that were completely within the service areas of the community centers. The result of this analysis were vacant parcels that would serve the most community centers. I then took these results and conducted the same analysis with park locations, then finally with the schools (each school level was analyzed separately). After I was complete, I began narrowing down the parcels based on size and slope. I continued my analysis by taking those remaining parcels and determining which ones lacked impervious surface. In the end, I had three vacant parcels that could be used for a garden.

### Citations

### Map Information
This map was completed using ArcGIS 10, spring quarter 2012. The projection used was NAD_1983_UTM_Zone_10N. All photos were taken by myself.

### Result #1
**Wilson High School**  
Student Population: 1345

<table>
<thead>
<tr>
<th>Location</th>
<th>Walking Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Bible Evangelical Church</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>Church in Tacoma</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>D.A. Gonyea Branch - Boys and Girls Club</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>Kindle Park and Playfield</td>
<td>5-10 Minutes</td>
</tr>
</tbody>
</table>

This 3800 ft² parcel of land is located on the corner of N 23rd St & N Villard St. Although overgrown with various plant species, the ground is relatively flat, with few large trees.

### Result #2
**Fawcett Elementary School**  
Student Population: 427

<table>
<thead>
<tr>
<th>Location</th>
<th>Walking Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Love &amp; Kindness Childcare Center</td>
<td>1-5 Minutes</td>
</tr>
<tr>
<td>Unity Children’s University Childcare</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>Calvary Baptist Church</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>Good Shepherd Lutheran Church</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>Stewart Heights Park</td>
<td>5-10 Minutes</td>
</tr>
</tbody>
</table>

This 2360 ft² parcel of land is located near A St & S 62nd St. This site is by far the most prepared physically for a garden and is completely flat. Located near the road provides easy access as well.

### Result #3
**First Creek Middle School**  
Student Population: 823

<table>
<thead>
<tr>
<th>Location</th>
<th>Walking Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastside Koos Pre-School and Childcare</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>Portland Avenue Evangelical Church</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>Bagim Road Baptist Church</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>New Hope Baptist Church</td>
<td>5-10 Minutes</td>
</tr>
<tr>
<td>Cloverdale Park</td>
<td>5-10 Minutes</td>
</tr>
</tbody>
</table>

This 4400 ft² parcel of land is located near E Portland Ave & E 59th St. Although overgrown with weeds, this would be a wonderful site for a garden. The ground was flat and open, with easy access from the street.

### Purpose
Urban gardening is an expanding practice in Tacoma, with numerous community gardens already thriving in this highly urbanized city. These gardens give community members the ability to grow fresh, affordable produce, where availability would otherwise be limited. With community gardens located throughout Tacoma, a wide range of individuals are able to do so. However, despite the abundance of community gardens, there is a lack of space that is designed for the youth of Tacoma.

### Objectives
My goal for this project was to locate vacant parcels of land, throughout Tacoma, that could be used as an educational community garden. Parcels were chosen based on physical and locational information.

### Methods
I began my analysis by geocoding a variety of addresses that corresponded to community organizations included YMCA’s, daycares, recreation centers, etc. Each geocoded address was then exported to a point and placed on my map. Once all data was downloaded to a temporary file, I began adding each file to either my file geodatabase or feature dataset; both of which were created before data was collected.

Upon completion of the general extent and level of each downloaded file, I began a network analysis of my data. Within the network analysis, a 1, 5, and 10 minute walking service area was placed around each point of data including schools, parks, and community and recreation centers. I chose this as I would want every student to be able to walk to the garden and thusly promote activeness, which is an added bonus of my project. Furthermore, including the community centers will promote community awareness and involvement.

After all service areas were formed, I began determining which parcels of land would service the most entities by narrowing down the vacant parcels that were completely within the service areas of the community centers. The result of this analysis were vacant parcels that would serve the most community centers. I then took these results and conducted the same analysis with park locations, then finally with the schools (each school level was analyzed separately). After I was complete, I began narrowing down the parcels based on size and slope. I continued my analysis by taking those remaining parcels and determining which ones lacked impervious surface. In the end, I had three vacant parcels that could be used for a garden.

### Acknowledgements
First and foremost, thank you to Matthew Kelley for your guidance and support on this project. Additionally, thank you to Monty Smith with the Northwest Community organizations included YMCA’s, daycares, recreation centers, etc. Each geocoded address was then exported to a point and placed on my map. Once all data was downloaded to a temporary file, I began adding each file to either my file geodatabase or feature dataset; both of which were created before data was collected.

Upon completion of the general extent and level of each downloaded file, I began a network analysis of my data. Within the network analysis, a 1, 5, and 10 minute walking service area was placed around each point of data including schools, parks, and community and recreation centers. I chose this as I would want every student to be able to walk to the garden and thusly promote activeness, which is an added bonus of my project. Furthermore, including the community centers will promote community awareness and involvement.

After all service areas were formed, I began determining which parcels of land would service the most entities by narrowing down the vacant parcels that were completely within the service areas of the community centers. The result of this analysis were vacant parcels that would serve the most community centers. I then took these results and conducted the same analysis with park locations, then finally with the schools (each school level was analyzed separately). After I was complete, I began narrowing down the parcels based on size and slope. I continued my analysis by taking those remaining parcels and determining which ones lacked impervious surface. In the end, I had three vacant parcels that could be used for a garden.

### Citations

### Map Information
This map was completed using ArcGIS 10, spring quarter 2012. The projection used was NAD_1983_UTM_Zone_10N. All photos were taken by myself.