Mycetoma is a very visual, rare disease that includes chronic infection of the skin and subcutaneous tissue. It has been given the ‘neglected tropical disease’ designation by the WHO due to it being mainly prevalent in poor populations in remote areas of a central region called the mycetoma belt. Eumycetoma, the disease form due to exposure to fungus, has poor treatment options currently. This commonly results in surgeries and amputations that leave the patient unable to work and even more exposed to the stigma of the disease. The main problem is affordability and accessibility of effective treatment in these neglected areas. With our project we proposed potential treatments for eumycetoma that would be effective but most importantly accessible. We began our investigation by looking at current studies and treatments and finding what compounds were most promising. One study used analogues of fenarimol, a molecule recognized by its antifungal properties, to significantly reduce eumycetoma fungal growth. Another looked at using triazoles in treating fungal agents. We decided to look at the synthesis of fenarimol analogues with heterocyclic-triazole. We came up with five target molecules with varying side groups that were chosen for being either cheap or effective. We were, however, unfortunately unable to synthesize and test these targets due to the pandemic. Research such as this is important in spreading awareness and working towards cures for neglected diseases such as eumycetoma.