Using Proteomics to Understand Ocean Acidification Stress in the Pacific Oyster

Emma Timmins-Schiffman (UW, SAFS)
Brook Nunn (UW, Med. Chem.)
David Goodlett (UW, Med. Chem.)
Gary Dickinson (The College of NJ)
Steven Roberts (UW, SAFS)
Crassostrea gigas

- Important aquaculture species in the PNW and worldwide
- Ecological services: water filtration, habitat, food
Ocean Acidification and Bivalves

- Acidosis and shell dissolution
- \(\text{CO}_3^{2-} \) availability

Energy/resource use

Growth & calcification
- Acidosis and shell dissolution
- \(\text{CO}_3^{2-} \) availability

\(p\text{CO}_2 \)
Characterize how ocean acidification affects the oyster’s response to a second stressor
Experimental Design

pCO_2 (μatm)

400 600 800 1000 1200 2800

1 month exposure

Δt_0: shell weight

No additional stress

Mechanical stress

- Shell weight
- Gill tissue:
 - Transcriptomics
 - Proteomics
- Whole body: fatty acids

Heat shock
- 2 sublethal temperatures: 42 & 43°C
- 1 lethal temperature: 44°C
Experimental Design

\[\text{pCO}_2 \text{ (\text{\textmu}atm)} \]

\begin{align*}
400 & \quad 600 & \quad 800 & \quad 1000 & \quad 1200 & \quad 2800 \\
\end{align*}

1 month exposure

No additional stress

- Shell weight
- Gill tissue:
 - Transcriptomics
 - Proteomics
- Whole body: fatty acids

Mechanical stress
Experimental Design

- Mechanical stress as a proxy for environmental stress
- MS promotes a catecholmine stress response in C. gigas (Lacoste et al. 2001)
Methods: Proteomics

- Expression of genes and proteins change in response to the environment
- Shotgun techniques provide non-biased surveys of molecular physiological changes
Shotgun sequencing using LC-MS/MS
Protein fragments (peptides) are sequenced
Sequences are identified using a database of proteins
Results: Proteomics

- 2,677 proteins were identified
- Coverage of entire C. gigas proteome: 9.5%
Results: Proteomics

Transcriptional processes are the most significantly enriched process.
pCO$_2$ has an effect on the proteome
pCO_2 significantly affects shell hardness.
There is less of a proteomic response to a second stressor at high pCO₂
Mechanical Stress

High MS

1029

Venny, Oliveros 2007
Mechanical Stress

High MS

Low MS

537

492

382
pCO$_2$ and Mechanical Stress

- **Stress Response**
 - Heat shock protein 70
 - Caspase

- **pH Homeostasis**
 - V-type proton ATPase

- **Immune Response**
 - Cathepsin B
 - MAP kinase kinase
Proteomics can provide insight into the physiological response to ocean acidification.
Exposure to multiple stressors can impact an organism’s ability to mount a successful response to either stressor.
Implications

We should continue to consider multiple stressors when assessing responses to environmental change.
Acknowledgements

- Taylor Shellfish: Joth Davis, Jason Ragan, Dustin Johnson
- Friday Harbor Labs: Emily Carrington, Ken Sebens, Michael O’Donnell, Matt George, Michelle Herko
- UW SAFS: Sam White, Mackenzie Gavery, Caroline Storer, Samantha Brombacker, Lisa Crosson, Julian Olden
- UW Proteomics Resource: Priska von Haller, Jimmy Eng, Eva Jahan
- Ronen Elad, Sam Garson
- Funding: NOAA Saltonstall-Kennedy, RocketHub